- Kingdom (biology)
In biological
taxonomy , a kingdom or regnum is ataxonomic rank in either (historically) the highest rank, or (in the new three-domain system) the rank below domain. Each kingdom is divided into smaller groups called phyla (or in some contexts these are called "divisions"). Currently, many textbooks from the United States use a system of six kingdoms (Animalia ,Plantae ,Fungi ,Protista ,Archaea , andEubacteria ), while British and Australian textbooks describe five kingdoms (Animalia ,Plantae ,Fungi ,Protista , andProkaryota orMonera ).The classifications of taxonomy arelife , domain, kingdom,phylum , class, order, family,genus , andspecies .Carolus Linnaeus distinguished two kingdoms of living things: Animalia foranimal s and Vegetabilia forplant s (Linnaeus also treatedmineral s, placing them in a third kingdom, Mineralia). Linnaeus divided each kingdom into classes, later grouped into phyla for animals and divisions for plants.It gradually became apparent how important the prokaryote/eukaryote distinction is, and Stanier and van Niel popularized
Edouard Chatton 's proposal in the 1960s.cite journal | author = R. Y. Stanier and C. B. van Niel | year = 1962 | title = The concept of a bacterium | journal = Arch. Microbiol. | volume = 42 | pages = 17–35 ]Five kingdoms
Robert Whittaker recognized an additional kingdom for the Fungi. The resulting five-kingdom system, proposed in 1968, has become a popular standard and with some refinement is still used in many works, or forms the basis for newer multi-kingdom systems. It is based mainly on differences innutrition ; his Plantae were mostly multicellularautotroph s, his Animalia multicellularheterotroph s, and his Fungi multicellularsaprotroph s. The remaining two kingdoms, Protista and Monera, included unicellular and simple cellular colonies.cite journal | author = R. H. Whittaker | year = 1969 | title = New concepts of kingdoms of organisms | journal = Science | volume = 163 | pages = 150–160 | doi = 10.1126/science.163.3863.150 ]ix kingdoms
In the years around 1980 there was an emphasis on phylogeny and redefining the kingdoms to be monophyletic groups, groups made up of relatively closely related organisms. The Animalia, Plantae, and Fungi were generally reduced to core groups of closely related forms, and the others placed into the Protista. Based on
RNA studiesCarl Woese divided the prokaryotes (Kingdom Monera) into two kingdoms, called Eubacteria and Archaebacteria. Carl Woese attempted to establish a Three Primary Kingdom (or Urkingdom) system in which Plants, Animals, Protista, and Fungi were lumped into one primary kingdom of all eukaryotes. The Eubacteria and Archaebacteria made up the other two urkingdoms. The initial use of "six Kingdom systems" represents a blending of the classic Five Kingdom system and Woese's Three Kingdom system. Such six Kingdom systems have become standard in many works.cite journal | author = C. R. Woese, W. E. Balch, L. J. Magrum, G. E. Fox and R. S. Wolfe | title = An ancient divergence among the bacteria | journal = Journal of Molecular Evolution | volume = 9 | pages = 305–311 | year = 1977 | doi = 10.1007/BF01796092 ]A variety of new eukaryotic kingdoms were also proposed, but most were quickly invalidated, ranked down to phyla or classes, or abandoned. The only one which is still in common use is the kingdom
Chromista proposed by Cavalier-Smith, including organisms such askelp ,diatom s, andwater mould s. Thus the eukaryotes are divided into three primarily heterotrophic groups, the Animalia, Fungi, and Protozoa, and two primarily photosynthetic groups, the Plantae (including red andgreen alga e) and Chromista. However, it has not become widely used because of uncertainty over the monophyly of the latter two kingdoms.Woese stresses genetic similarity over outward appearances and behaviour, relying on comparisons of ribosomal RNA genes at the molecular level to sort out classification categories. A plant does not look like an animal, but at the cellular level, both groups are eukaryotes, having similar subcellular organization, including cell nuclei, which the Eubacteria and Archaebacteria do not have. More importantly, plants, animals, fungi, and protists are more similar to each other in their genetic makeup at the molecular level, based on RNA studies, than they are to either the Eubacteria or Archaebacteria. Woese also found that all of the eukaryotes, lumped together as one group, are more closely related, genetically, to the Archaebacteria than they are to the Eubacteria. This means that the Eubacteria and Archaebacteria are separate groups even when compared to the eukaryotes. So, Woese established the
Three-domain system , clarifying that all the Eukaryotes are more closely genetically related compared to their genetic relationship to either the bacteria or the archaebacteria, without having to replace the "six kingdom systems" with a three kingdom system. The Three Domain system is a "six kingdom system" that unites the eukaryotic kingdoms into the Eukarya Domain based on their relative genetic similarity when compared to the Bacteria Domain and the Archaea Domain. Woese also recognized that the Protista Kingdom is not a monophyletic group and might be further divided at the level of Kingdom. Others have divided the Protista Kingdom into the Protozoa and the Chromista, for instance.Recent Advances
Classification is an ongoing area of research and discussion. As new findings and technologies become available they allow the refinement of the model. For example, gene sequencing techniques allow the comparison of the genome of different groups (
Phylogenomics ). A study published in 2007 by Fabien Burki, "et al" [cite journal
last=Burki
first=fabien
author-link=Fabien_Burki, et al.
publication-date=August 29, 2007
date=July 26, 2007
year=2007
title=Phylogenomics Reshuffles the Eukaryotic Supergroups
periodical=PLoS ONE
volume=2
issue=8
pages=e790. doi=10.1371
url=http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0000790
doi=10.1371/journal.pone.0000790
journal=PLoS ONE] proposes four high level groups of eukaryotes based on phylogenomics research.
#Plantae (green and red algae, and plants)
#Opisthokont s (amoebas, fungi, and animals)
#Excavata (free-living and parasiticprotist s)
# SAR (acronym forStramenopile s,Alveolate s, andRhizaria –the names of some of its members. Burki found that the previously split groups Rhizaria andChromalveolate s were more similar in 123 common genes than once thought.)ummary
(Note that the equivalences in this table are not perfect. e.g. Haeckell placed the
red algae (Haeckell's Florideae; modernFlorideophyceae ) andblue-green algae (Haeckell's Archephyta; modernCyanobacteria ) in his Plantae, but in modern classifications the empires are erroneously attributed to Chatton in the table who did not rank the 2 groups nor formally name them).In 1998
Cavalier-Smith divided Protista in 2 new kingdoms:Chromista the phylogenetic group of golden-brown algae that includes those algae whose chloroplasts contain chlorophylls a and c, as well as various colorless forms that are closely related to them, andProtozoa , the kingdom of protozoans.* Cavalier-Smith, T. 2006. Protozoa: the most abundant predators on earth, Microbiology Today, Nov. 2006, pp. 166-167. (pdf [http://www.sgm.ac.uk/pubs/micro_today/pdf/110605.pdf aquí] ).
References
ee also
*
Cladistics
*Systematics External links
* [http://waynesword.palomar.edu/trfeb98.htm The five kingdom concept]
* [http://home.manhattan.edu/~frances.cardillo/plants/intro/plntlist.html Whittaker's classification]
Wikimedia Foundation. 2010.