- Multiple independently targetable reentry vehicle
-
For the band, see M.I.R.V..
A multiple independently targetable reentry vehicle (MIRV) warhead is a collection of nuclear weapons carried on a single intercontinental ballistic missile (ICBM) or a submarine-launched ballistic missile (SLBM). Using a MIRV warhead, a single launched missile can strike several targets, or fewer targets redundantly. By contrast a unitary warhead is a single warhead on a single missile.
Contents
Purpose
The military purpose of a MIRV is threefold:
- Provides greater target damage for a given missile payload. Radiation (including radiated heat) from a nuclear warhead diminishes as the square of the distance (called the inverse-square law), and blast pressure diminishes as the cube of the distance. For example at a distance of 4 km from ground zero, the blast pressure is only 1/64th that of 1 km. Due to these effects several small warheads cause much more target damage area than a single large one. This in turn reduces the number of missiles and launch facilities required for a given destruction level - much the same as the purpose of a conventional submunition.
- With single warhead missiles, one missile must be launched for each target. By contrast with a MIRV warhead, the post-boost (or bus) stage can dispense the warheads against multiple targets across a broad area.
- Reduces the effectiveness of an anti-ballistic missile system that relies on intercepting individual warheads. While a MIRV attacking missile can have multiple (3–12 on United States missiles and 3-10 on Russians) warheads, interceptors may have only one warhead per missile. Thus, in both a military and an economic sense, MIRVs render ABM systems less effective, as the costs of maintaining a workable defense against MIRVs would greatly increase, requiring multiple defensive missiles for each offensive one. Decoy reentry vehicles can be used alongside actual warheads to minimize the chances of the actual warheads being intercepted before they reach their targets. A system that destroys the missile earlier in its trajectory (before MIRV separation) is not affected by this but is more difficult, and thus more expensive to implement.
MIRV land-based ICBMs were considered destabilizing because they tended to put a premium on striking first. The world's first MIRV—US Minuteman III missile of 1970—threatened to rapidly increase the US's deployable nuclear arsenal and thus the possibility that it would have enough bombs to destroy virtually all of the Soviet Union's nuclear weapons and negate any significant retaliation. Later on the US feared the Soviet's MIRVs because Soviet missiles had a greater throw-weight and could thus put more warheads on each missile than the US could. For example the US MIRVs might have increased their warhead per missile count by a factor of 6 while the Soviets increased theirs by a factor of 10. Furthermore, the US had a much smaller proportion of its nuclear arsenal in ICBMs than the Soviets. Bombers could not be outfitted with MIRVs so their capacity would not be multiplied. Thus the US did not seem to have as much potential for MIRV usage as the Soviets. However, the US had a larger number of SLBMs, which could be outfitted with MIRVs, and helped offset the ICBM disadvantage. It is because of this that this type of weapon was banned under the START II agreement. However, START II was never ratified by the Russian Duma due to disagreements about the ABM Treaty.
The Russian Federation claims to have developed the most advanced MIRV system as of 2006 for use in the RSM-56 Bulava.[citation needed]
Mode of operation
In a MIRV, the main rocket motor (or booster) pushes a "bus" (see illustration) into a free-flight suborbital ballistic flight path. After the boost phase the bus maneuvers using small on-board rocket motors and a computerised inertial guidance system. It takes up a ballistic trajectory that will deliver a reentry vehicle containing a warhead to a target, and then releases a warhead on that trajectory. It then maneuvers to a different trajectory, releasing another warhead, and repeats the process for all warheads.
The precise technical details are closely guarded military secrets, to hinder any development of enemy counter-measures. The bus's on-board propellant limits the distances between targets of individual warheads to perhaps a few hundred km.[1] Some warheads may use small hypersonic airfoils during the descent to gain additional cross-range distance. Additionally, some buses (e.g. the British Chevaline system) can release decoys to confuse interception devices and radars, such as aluminized balloons or electronic noisemakers.
Accuracy is crucial, because doubling the accuracy decreases the needed warhead energy by a factor of four for radiation damage and by a factor of eight for blast damage. Navigation system accuracy and the available geophysical information limits the warhead target accuracy. Some writers believe that government-supported geophysical mapping initiatives and ocean satellite altitude systems such as Seasat may have a covert purpose to map mass concentrations and determine local gravity anomalies, in order to improve accuracies of ballistic missiles. Accuracy is expressed as circular error probable (CEP). This is simply the radius of the circle that the warhead has a 50 percent chance of falling into when aimed at the center. CEP is about 90–100 m for the Trident II and Peacekeeper missiles[citation needed].
See also
- Atmospheric reentry
- M45 SLBM
- M51 SLBM
- Maneuverable reentry vehicle (MARV)
- Multiple Reentry vehicle
- Nuclear warfare
- Poseidon missile
- START II
References
External links
- "MIRV: A BRIEF HISTORY OF MINUTEMAN and MULTIPLE REENTRY VEHICLES" by Daniel Buchonnet, Lawrence Livermore Laboratory, February 1976.
- Operation 1964
- The Defense of the United States, 1981 CBS Five-Part TV Series from Google Video
Categories:- Nuclear weapons
Wikimedia Foundation. 2010.