Skeletal formula

Skeletal formula

The skeletal formula of an organic compound is a shorthand representation of its molecular structure. Skeletal formulae are in organic chemistry because they show complicated structures clearly and they are quick and simple to draw.

Carbon skeleton

The term skeletal refers to the "carbon skeleton" of an organic compound - that is, the chains, branches and/or rings of carbon atoms that form the basis of the structure of an organic molecule. The skeleton may have other atoms or groups of atoms bonded to its carbons. Hydrogen is the most common non-carbon atom bonded to carbon and is not explicitly drawn. Other atoms are known as heteroatoms and groups of atoms are called functional groups, as they give the molecule a function. Heteroatoms and functional groups are known collectively as substituents, as they are considered to be a substitute for the hydrogen atom that would be present in the parent hydrocarbon of the organic compound in question.

Implicit carbon and hydrogen atoms

In standard chemical formulae, carbon atoms are represented by the symbol C and hydrogen atoms by the symbol H. In skeletal formulae, the location of carbon atoms, and hydrogen atoms bonded to carbon, are not denoted by the symbols C and H, but are . Carbon atoms are implied to exist at each vertex. Carbon atoms are assumed to have four covalent bonds to them, so the number of hydrogen atoms attached to a particular carbon atom can be deduced by subtracting from four the number of bonds drawn to that carbon.

For example, in the image to the right, the skeletal formula of hexane is shown. The carbon atom labelled C1 has only one bond shown to it, so there must also be three hydrogens bonded to it, in order to make its total number of bonds four. The carbon atom labelled C3 has two bonds to it and is therefore also bonded to two hydrogen atoms.

Any hydrogen atoms bonded to non-carbon atoms "are" drawn explicitly. In ethanol, C2H5OH, for instance, the hydrogen atom bonded to oxygen is denoted by the symbol H, whereas the hydrogens bonded to carbon atoms are not shown directly. Lines representing heteroatom-hydrogen bonds are usually omitted for clarity and compactness, so a functional group like the hydroxyl group is most often written −OH instead of −O−H. These bonds are sometimes drawn out in full in order to accentuate their presence when they participate in reaction mechanisms.

Explicit heteroatoms

All atoms that are not carbon or hydrogen are signified by their chemical symbol, for instance Cl for chlorine, O for oxygen and Na for sodium. These atoms are commonly known as heteroatoms in the context of organic chemistry.

Pseudoelement symbols

There are also symbols that appear to be chemical element symbols, but represent certain very common substituents or indicate an unspecified member of a group of elements. These are known as pseudoelement symbols. The most widely used symbol is Ph, which represents the phenyl group. A list of pseudoelement symbols is shown below:

Elements

*X for any halogen atom
*M for any metal atom

Alkyl groups

*R for any alkyl group or even any substituent at all
*Me for the methyl group
*Et for the ethyl group
*"n"-Pr for the propyl group
*"i"-Pr for the isopropyl group
*Bu for the butyl group
*"i"-Bu for the isobutyl group
*"s"-Bu for the secondary butyl group
*"t"-Bu for the tertiary butyl group
*Pn for the pentyl group
*Hx for the hexyl group
*Hp for the group
*Cy for the cyclohexyl group

Aromatic substituents

*Ar for any aromatic substituent
*Bn for the benzyl group
*Bz for the benzoyl group
*Ph for the phenyl group
*Tol for the tolyl group
*Xy for the xylyl group

Functional groups

*Ac for the acetyl group "(Ac is also the symbol for the element actinium. However, actinium is rarely encountered in organic chemistry, so the use of Ac to represent the acetyl group never causes confusion)"

Leaving groups

"See the article leaving group for further information"
*Bs for the brosyl group
*Ns for the nosyl group
*Tf for the trifyl group
*Ts for tosyl group

Multiple bonds

Two atoms can be bonded by sharing more than one pair of electrons. The common bonds to carbon are single, double and triple bonds. Single bonds are most common and are represented by a single, solid line between two atoms in a skeletal formula. Double bonds are denoted by two parallel lines, and triple bonds are shown by three parallel lines.

In more advanced theories of bonding, non-integer values of bond order exist. In these cases, a combination of solid and dashed lines indicate the integer and non-integer parts of the bond order, respectively.

"N.B. in the gallery above, double bonds have been shown in red and triple bonds in blue. This was added for clarity - multiple bonds are not normally coloured in skeletal formulae."

Benzene rings

Benzene rings are very common in organic compounds. To represent the delocalization of electrons over the six carbon atoms in the ring, a circle is drawn inside the hexagon of single bonds. This style is very common in introductory organic chemistry texts used in schools.

An alternative style that is more common in academia is the Kekulé structure. Although it could be considered inaccurate as it implies three single bonds and three double bonds (benzene would therefore be 1,3,5-cyclohexatriene), all qualified chemists are fully aware of the delocalization in benzene. Kekulé structures are useful for drawing reaction mechanisms clearly.

tereochemistry

Stereochemistry is conveniently denoted in skeletal formulae:
*solid lines represent bonds in the plane of the paper or screen
*wedges represent bonds that point out of the plane of the paper or screen, towards the observer
*dashed lines represent bonds that point into the plane of the paper or screen, away from the observer
*wavy lines represent either unknown stereochemistry or a racemic mixture of the two possible enantiomers

Hydrogen bonds

Hydrogen bonds are sometimes denoted by dotted or dashed lines

External links

* [http://www.chemguide.co.uk/basicorg/conventions/draw.html Drawing organic molecules] from "chemguide.co.uk"


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Fórmula esqueletal — del fármaco antidepresivo escitalopram, mostrando representaciones esqueletales de los heteroátomos, un enlace triple, anillos de benceno y la estereoquímica En química orgánica, la fórmula esqueletal de un compuesto orgánico es una… …   Wikipedia Español

  • Fórmula estructural — La fórmula estructural de un compuesto químico es una representación gráfica de la estructura molecular, que muestra cómo se ordenan o distribuyen espacialmente los átomos. Se muestran los enlaces químicos dentro de la molécula, ya sea… …   Wikipedia Español

  • Structural formula — The structural formula of a chemical compound is a graphical representation of the molecular structure, showing how the atoms are arranged. The chemical bonding within the molecule is also shown, either explicitly or implicitly. There are several …   Wikipedia

  • Hemiacetal — Skeletal formula of a hemiacetal Hem …   Wikipedia

  • Dopamine antagonist — Skeletal formula of clozapine, the first atypical antipsychotic, a dopamine antagonist. A dopamine antagonist is a drug which blocks dopamine receptors by receptor antagonism. There are five known types of dopamine receptors in the human body;… …   Wikipedia

  • Nonaflate — Skeletal formula of the nonaflate anion Nonaflate, CF3CF2CF2CF2SO3– is the common name given to nonafluorobutanesulfonates, the salts or esters of perfluorobutanesulfonic acid. Its uses are similar to those of triflate …   Wikipedia

  • Butene — Butene, also known as butylene, is an alkene with the formula C4H8. It is a colourless gas that is present in crude oil as a minor constituent in quantities that are too small for viable extraction. It is therefore obtained by catalytic cracking… …   Wikipedia

  • Mauveine — Letter from Perkin s son, with a sample of dyed silk Mauveine, also known as aniline purple and Perkin s mauve, was the first synthetic organic chemical dye.[1][2] Its chemical …   Wikipedia

  • Lewis structure — The Lewis structure of water. Lewis structures (also known as Lewis dot diagrams, electron dot diagrams, and electron dot structures) are diagrams that show the bonding between atoms of a molecule and the lone pairs of electrons that may exist in …   Wikipedia

  • Formule topologique — Traduction à relire Skeletal formula → F …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”