- Indigo dye
chembox
Name = Indigo
ImageFile = Indian indigo dye lump.jpg
ImageSize = 200px
ImageName = Lump of Indian indigo dye
ImageFile1 = Indigo.svg
ImageSize1 = 200px
ImageName1 = Indigo
OtherNames = 2,2’-Bis(2,3-dihydro-3- oxoindolyliden), Indigotin
Section1 = Chembox Identifiers
SMILES = O=c3c(=c2 [nH] c1ccccc1c2=O) [nH] c4ccccc34
CASNo = 482-89-3
RTECS = DU2988400
InChI=1/C16H10N2O2/c19-15-9-5-1-3-7-11(9)17-13(15)14-16(20)10-6-2-4-8-12(10)18-14/h1-8,17-18H/b14-13+
Section2 = Chembox Properties
Formula = C16H10N2O2
MolarMass = 262.27 g/mol
Appearance = dark blue crystalline powder
Density = 1.199 g/cm3
Solubility = insoluble at 20 °C
MeltingPt = 390–392 °C
BoilingPt =
Section7 = Chembox Hazards
ExternalMSDS =
EUClass = 207-586-9
RPhrases = R36/37/38
SPhrases = S26-S36
FlashPt =
Autoignition =
Section8 = Chembox Related
OtherCpds =Indoxyl Tyrian purple Indican Indigo dye is
dye with a distinctive blue color (seeindigo ). The chemical compound that constitutes the indigo dye is called indigotin. The ancients extracted the natural dye from several species ofplant as well as one of the two famous Phoenician sea snails, but nearly all indigo produced today is synthetic. Historically, indigo played an important role in many countries' economies because natural blue dyes are rare.Among other uses, it is used in the production of
denim cloth for bluejeans . The form of indigo used in food is called "indigotine", and is listed in the USA asFD&C Blue No. 2, and in theEuropean Union asE Number : E132.Sources and uses
A variety of plants have provided indigo throughout history, but most natural indigo is obtained from those in the genus "
Indigofera ", which are native to thetropics . In temperate climates indigo can also be obtained fromwoad ("Isatis tinctoria") and dyer's knotweed ("Polygonum tinctorum"), although the "Indigofera" species yield more dye. The primary commercial indigo species inAsia was true indigo ("Indigofera tinctoria ", also known as "Indigofera sumatrana"). In Central andSouth America the two species "Indigofera suffruticosa" (Anil) and "Indigofera arrecta" (Natal indigo) were the most important.Dye was obtained from the processing of the plant's leaves. These were soaked in water and fermented in order to convert the
glycoside indican naturally present in the plant to the blue dyeindigotin . The precipitate from the fermented leaf solution was mixed with a strong base such as lye, pressed into cakes, dried, and powdered. The powder was then mixed with various other substances to produce different shades of blue and purple.Natural indigo was the only source of the dye until July 1897. Within a short time, however, synthetic indigo almost completely superseded natural indigo, and today nearly all indigo produced is synthetic.
In the
United States , the primary use for indigo is as a dye for cotton work clothes and blue jeans.For many years indigo was also used to produce deep navy blue colors on wool. Indigo does not bond strongly to wool fibers, and wear and repeated washing slowly removes the dye.
Indigo is also used as a
food coloring , and is listed in the USA as FD&C Blue No. 2. The [http://www.cfsan.fda.gov/~lrd/cfr74102.html specification] for FD&C Blue No. 2 includes three substances, of which the major one is the sodium salt of [http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=7851682 Indigotindisulfonate] .Indigotinesulfonate is also used as a dye in
renal function testing, as areagent for the detection ofnitrate s andchlorate s and in the testing of milk.History
Classical antiquity-Middle Ages
Indigo, a blue pigment and a dye, was used in
India , which was also the earliest major center for its production and processing.Kriger & Connah, page 120] The "Indigofera tinctoria" variety of Indigo was domesticated in India. Indigo, used as a dye, made its way to theGreeks and theRomans via various trade routes, and was valued as a luxury product.Indigo is among the oldest dyes to be used for textile dyeing and printing. Many Asian countries, such as
India ,China ,Japan andSouth East Asia n nations have used indigo as a dye (particularlysilk dye) for centuries. The dye was also known to ancient civilizations inMesopotamia , Egypt, Greece, Rome, Britain,Mesoamerica ,Peru ,Iran , andAfrica .India is believed to be the oldest center of indigo dyeing in the Old World. It was a primary supplier of indigo to Europe as early as the Greco-Roman era. The association of India with indigo is reflected in the Greek word for the dye, which was "indikon". The Romans used the term "indicum", which passed into Italian dialect and eventually into English as the word "indigo".
In Mesopotamia, a Neo-Babylonian cuneiform tablet of the 7th century BC gives a recipe for the dyeing of wool, where lapis-colored wool (uqnatu) is produced by repeated immersion and airing of the cloth. Indigo was most probably imported from India.
The Romans used indigo as a pigment for painting and for medicinal and cosmetic purposes. It was a luxury item imported to the Mediterranean from India by Arab merchants.
The
Phoenician s were particularly famous for their mass production of these dyes in classical times, and gigantic mounds of the discarded seashells are still to be found near the ancient cities ofTyre andSidon They so dominated production of the dye that it was often referred to as "Phoenician (or Tyrian) purple". ["Royal Purple of Tyre" by Lloyd B. Jensen. "Journal of Near Eastern Studies", Vol. 22 No. 2 (Apr. 1963), pp. 104, 106.]Indigo remained a rare commodity in Europe throughout the Middle Ages.
Woad , a chemically identical dye derived from the plant "Isatis tinctoria" (Brassicaceae ), was used instead.In the late fifteenth century, the Portuguese explorer
Vasco da Gama discovered a sea route to India. This led to the establishment of direct trade with India, theSpice Islands , China, and Japan. Importers could now avoid the heavy duties imposed by Persian,Levant ine, and Greek middlemen and the lengthy and dangerous land routes which had previously been used. Consequently, the importation and use of indigo in Europe rose significantly. Much European indigo from Asia arrived through ports in Portugal, theNetherlands , and England.Spain imported the dye from its colonies in South America. Many indigo plantations were established by European powers in tropical climates; it was a major crop inJamaica andSouth Carolina , with much or all of the labor performed by enslaved Africans and African-Americans. Indigo plantations also thrived in theVirgin Islands . However,France andGermany outlawed imported indigo in the 1500s to protect the local woad dye industry.Indigo was the foundation of centuries-old textile traditions throughout
West Africa . From theTuareg nomads of theSahara toCameroon , clothes dyed with indigo signified wealth. Women dyed the cloth in most areas, with the Yoruba ofNigeria and the Manding ofMali particularly well known for their expertise. Among the Hausa male dyers working at communal dye pits were the basis of the wealth of the ancient city ofKano , and can still be seen plying their trade today at the same pits.In Japan, indigo became especially important in the
Edo period when it was forbidden to use silk, so the Japanese began to import and plant cotton. It was difficult to dye the cotton fiber except with indigo. Even today indigo is very much appreciated as a color for the summerKimono Yukata, as this traditional clothing recalls Nature and the blue sea. In colonial North America there were three commercially important species: the native "Indigofera caroliniana ", and the introduced "Indigofera tinctoria" and "Indigofera suffruticosa". [cite journal | journal = Economic Botany | volume = 33 | issue = 2 | year = 1979 | pages = 128–134 | title = The indigo of commerce in colonial North America | author = David H. Rembert, Jr. | doi = 10.1007/BF02858281 ]Late 19th century
In 1865 the German chemist Adolf von Baeyer began working with indigo. His work culminated in the first synthesis of indigo in 1878 from Istatine, a second synthesis in 1880 from o-nitrobenzaldehyde and
acetone upon addition of dilute sodium hydroxide, barium hydroxide, or ammonia and the announcement of its chemical structure three years later.The production of o-nitrobenzaldehyde was too complicated for a commercial product so the search for alternative starting materials was crucial for BASF and Hoechst. The synthesis of N-(2-Carboxyphenyl)glycine starting from the easy to obtain
anthracene gave the development of a synthesis a boost.BASF developed a commercially feasible manufacturing process that was in use by 1897, and by 1913 natural indigo had been almost entirely replaced by synthetic indigo. In 2002, 17,000 tons of synthetic indigo were produced worldwide.In the nineteenth century, the British obtained much indigo from
India . With the coming of the synthetic substitute, the demand for natural indigo dropped and indigo farming became unprofitable.In literature, the play Nildarpan by
Dinabandhu Mitra is based on the indigo slavery and forceful cultivation of indigo in India. It played an essential part in theBengal i indigo revolt of 1858 calledNilbidraha .Developments in dyeing technology
Indigo is a challenging dye to use because it is not
soluble inwater ; to be dissolved, it must undergo a chemical change (reduction ). When a submerged fabric is removed from the dyebath, the indigo quickly combines withoxygen in the air and reverts to its insoluble form. When it first became widely available in Europe in the sixteenth century, European dyers and printers struggled with indigo because of this distinctive property. It also required several chemical manipulations, some involving toxic materials, and had many opportunities to injure workers. In fact, during the 19th century, English poet William Wordsworth referred to the plight of indigo dye workers of his hometown of Cockermouth in his autobiographical poem "The Prelude". Speaking of their dire working conditions and the empathy that he feels for them, he writes, "Doubtless, I should have then made common cause/ With some who perished; haply perished too,/ A poor mistaken and bewildered offering - / Unknown to those bare souls of miller blue."A preindustrial process for dyeing with indigo, used in Europe, was to dissolve the indigo in stale urine.Urine reduces the water-insoluble indigo to a soluble substance known as "indigo white" or "leucoindigo", which is yellow, but because small amounts are easily oxidizied to indigo, the solution is often yellow-green. Fabric dyed in the solution turns blue after the indigo white oxidizes and returns to indigo. Synthetic
urea to replace urine became available in the 1800s.Another preindustrial method, used in
Japan , was to dissolve the indigo in a heated vat in which a culture of thermophilic, anaerobic bacteria was maintained. Some species of such bacteria generatehydrogen as a metabolic product, which can convert insoluble indigo into soluble indigo white. Cloth dyed in such a vat was decorated with the techniques ofshibori (tie-dye),kasuri ,katazome , andtsutsugaki . Examples of clothing and banners dyed with these techniques can be seen in the works ofHokusai and other artists.Two different methods for the direct application of indigo were developed in England in the eighteenth century and remained in use well into the nineteenth century. The first method, known as "pencil blue" because it was most often applied by pencil or brush, could be used to achieve dark hues.
Arsenic trisulfide and a thickener were added to the indigo vat. The arsenic compound delayed the oxidation of the indigo long enough to paint the dye onto fabrics.The second method was known as "china blue" due to its resemblance to Chinese blue-and-white porcelain. Instead of using an indigo solution directly, the process involved printing the insoluble form of indigo onto the fabric. The indigo was then reduced in a sequence of baths of
iron(II) sulfate , with air-oxidation between each immersion. The china blue process could make sharp designs, but it could not produce the dark hues possible with the pencil blue method.Around 1880 the "glucose process" was developed. It finally enabled the direct printing of indigo onto fabric and could produce inexpensive dark indigo prints unattainable with the china blue method.
Since 2004 freeze dried indigo, or instant indigo, has become available. In this method the indigo has already been reduced, and then freeze dried into a crystal. The crystals are added to warm water to create the dye pot. As in a standard indigo dye pot, care has to be taken to avoid mixing in oxygen. Freeze dried indigo is simple to use, and the crystals can be stored indefinitely as long as they are not exposed to moisture. [cite web |url= http://www.paradisefibers.com/instantindigo.htm|title=Directions for Instant Indigo |accessdate=2008-05-06 |author= Judith McKenzie McCuin]
Chemical properties
Indigo is a dark blue crystalline powder that sublimes at 390°–392°C. It is insoluble in water, alcohol, or ether but soluble in
chloroform ,nitrobenzene , or concentratedsulfuric acid . The chemical structure of indigo corresponds to the formula C16H10N2O2.The naturally occurring substance is
indican , which is colorless and soluble in water.Indican can easily be hydrolyzed to β-D-glucose andindoxyl . Mildoxidation , such as by exposure to air, converts indoxyl to indigo.The manufacturing process developed in the late 1800s is still in use throughout the world. In this process,
indoxyl issynthesized by the fusion ofsodium phenylglycinate in a mixture ofsodium hydroxide and sodamide.Several simpler compounds can be produced by decomposing indigo; these compounds include
aniline andpicric acid . The only chemical reaction of practical importance is its reduction byurea to indigo white. The indigo white is reoxidized to indigo after it has been applied to the fabric.Indigo treated with sulfuric acid produces a blue-green color. It became available in the mid-1700s. Sulfonated indigo is also referred to as "Saxon blue" or "
indigo carmine "."
Tyrian purple " was a valuable purple dye in antiquity. It was made from excretions of a commonMediterranean Sea snail. In 1909 its structure was shown to be 6,6′-dibromoindigo. It has never been produced synthetically on a commercial basis.The
SMILES structure of indigo is SMILES|S=O=c3c(=c2 [nH] c1ccccc1c2=O) [nH] c4ccccc34 and its CAS number is CASREF|CAS=12626-73-2.Chemical synthesis
The
Baeyer-Drewson indigo synthesis is a method dating back to 1882. Indigo may be synthetically manufactured in a number of different ways. The original method, first used to synthesise indigo byHeumann in 1897, involves heating N-(2-Carboxyphenyl)glycine acid to 200°C in an inert atmosphere withsodium hydroxide . This produces indoxyl-2-carboxylic acid, a material that readily decarboxylates and oxidises in air to form indigo.The modern synthesis of indigo is slightly different from that route originally used and its discovery is credited to Pfleger in 1901. In this process, N-phenylglycine is treated with an alkaline melt of sodium and potassium hydroxides containing
sodamide . This producesindoxyl , which is subsequently oxidised in air to form indigo.External links
* [http://www.plantcultures.org/plants/indigo_landing.html Plant Cultures: botany, history and uses of indigo]
* [http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=7851682 Pubchem page for indigotine]
* [http://www.cfsan.fda.gov/~lrd/cfr74102.html FD&C regulation on indigotine]Notes
References
* Kriger, Colleen E. & Connah, Graham (2006). "Cloth in West African History". Rowman Altamira. ISBN 0759104220.
Further reading
*cite book |title = Indigo | first = Jenny | last = Balfour-Paul | publisher = British Museum Press | location = London | year= 1998 | pages = 264 pages
*cite journal |title = The natural constituents of historical textile dyes | last = Ferreira | first = E.S.B. | coauthors = Hulme A. N., McNab H., Quye A. | journal = Chemical Society reviews | volume = 33 | issue = 6 | year= 2004 | doi = 10.1039/b305697j | pages = 329
*cite journal |title = The chemistry of plant and animal dyes | last = Sequin-Frey | first = Margareta | journal = Journal of Chemical Education | volume = 58 | issue = 4 | year= 1981 | url = http://jchemed.chem.wisc.edu/Journal/Issues/1981/Apr/jceSubscriber/JCE1981p0301.pdf
Wikimedia Foundation. 2010.