Graft-versus-host disease

Graft-versus-host disease

Infobox Disease
Name = Graft-versus-host disease
DiseasesDB = 5388
ICD10 = ICD10|T|86|0|t|80
ICD9 = ICD9|996.85
MedlinePlus =
eMedicineSubj = med
eMedicineTopic = 926
eMedicine_mult = eMedicine2|ped|893 eMedicine2|derm|478
MeshID = D006086

Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation in which functional immune cells in the transplanted marrow recognize the recipient as "foreign" and mount an immunologic attack.

Causes

According to the 1959 Billingham Criteria, 3 criteria must be met in order for GVHD to occur.cite web |url=http://www.chp.edu/CHP/History+of+Intestinal+Transplantation+ |title=Childrens Hospital of Pittsburgh - History of Intestinal Transplantation |format= |work= |accessdate=2008-09-20]
* 1) Administration of an immunocompetent graft, with viable and functional immune cells.
* 2) The recipient is immunologically disparate - histoincompatible.
* 3) The recipient is immunocompromised and therefore cannot destroy or inactivate the transplanted cells.

After bone marrow transplantation, T cells present in the graft, either as contaminants or intentionally introduced into the host, attack the tissues of the transplant recipient after perceiving host tissues as antigenically foreign. The T cells produce an excess of cytokines, including TNF alpha and interferon-gamma (IFNg). A wide range of host antigens can initiate graft-versus-host-disease, among them the human leukocyte antigens (HLAs). However, graft-versus-host disease can occur even when HLA-identical siblings are the donors. HLA-identical siblings or HLA-identical unrelated donors often have genetically different proteins (called minor histocompatibility antigens) that can be presented by MHC molecules to the recipient's T-cells, which see these antigens as foreign and so mount an immune response.Fact|date=June 2008

While donor T-cells are undesirable as effector cells of graft-versus-host-disease, they are valuable for engraftment by preventing the recipient's residual immune system from rejecting the bone marrow graft (host-versus-graft). Additionally, as bone marrow transplantation is frequently used to treat cancer, mainly leukemias, donor T-cells have proven to have a valuable graft-versus-tumor effect. A great deal of current research on allogeneic bone marrow transplantation involves attempts to separate the undesirable graft-vs-host-disease aspects of T-cell physiology from the desirable graft-versus-tumor effect.

Types

Clinically, graft-versus-host-disease is divided into acute and chronic forms.
* The "acute" or "fulminant" form of the disease (aGVHD) is normally observed within the first 100 days post-transplant [ [http://www.marrow.org/PHYSICIAN/improved_management_gvhd.html Graft versus Host Disease] , from the National Marrow Donor Program] , and is a major challenge to transplants owing to associated morbidity and mortality [cite journal |author=Goker H, Haznedaroglu IC, Chao NJ |title=Acute graft-vs-host disease: pathobiology and management |journal=Exp. Hematol. |volume=29 |issue=3 |pages=259–77 |year=2001 |pmid=11274753 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0301-472X(00)00677-9] .
* The "chronic" form of graft-versus-host-disease (cGVHD) normally occurs after 100 days. The appearance of moderate to severe cases of cGVHD adversely influences long-term survival [cite journal |author=Lee SJ, Vogelsang G, Flowers ME |title=Chronic graft-versus-host disease |journal=Biol. Blood Marrow Transplant. |volume=9 |issue=4 |pages=215–33 |year=2003 |pmid=12720215 |doi=10.1053/bbmt.2003.50026 |url=] .

This distinction is not arbitrary: acute and chronic graft-versus-host-disease appear to involve different immune cell subsets, different cytokine profiles, somewhat different host targets, and respond differently to treatment.

Clinical manifestation

Classically, acute graft-versus-host-disease is characterized by selective damage to the liver, skin and mucosa, and the gastrointestinal tract. Newer research indicates that other graft-versus-host-disease target organs include the immune system (the hematopoietic system—e.g. the bone marrow and the thymus) itself, and the lungs in the form of idiopathic pneumonitis. Chronic graft-versus-host-disease also attacks the above organs, but over its long-term course can also cause damage to the connective tissue and exocrine glands.

Acute GVHD of the GI tract can result in severe intestinal inflammation, sloughing of the mucosal membrane, severe diarrhea, abdominal pain, nausea, and vomiting. This is typically diagnosed via intestinal biopsy. Liver GVHD is measured by the bilirubin level in acute patients. Skin GVHD results in a diffuse maculopapular rash, sometimes in a lacy pattern.

Acute GVHD is staged as follows: overall grade (skin-liver-gut) with each organ staged individually from a low of 1 to a high of 4. Patients with grade IV GVHD usually have a poor prognosis. If the GVHD is severe and requires intense immunosuppression involving steroids and additional agents to get under control, the patient may develop severe infections as a result of the immunosuppression and may die of infection.

Transfusion-associated GVHD

This type of GVHD is associated with transfusion of un-irradiated blood to immunocompromised recipients. It can also occur in situations where the blood donor is homozygous and the recipient is heterozygous for an HLA haplotype. It is associated with higher mortality (80-90%) due to involvement of bone marrow lymphoid tissue, however the clinical manifestations are similar to GVHD resulting from bone marrow transplantation. Transfusion-associated GVHD is rare in modern medicine. It is almost entirely preventable by controlled irradiation of blood products to inactivate the white blood cells (including lymphocytes) within.

Prevention

*DNA-based tissue typing allows for more precise HLA matching between donors and transplant patients, which has been proven to reduce the incidence and severity of GVHD and to increase long-term survival. [cite journal |author=Morishima Y, Sasazuki T, Inoko H, "et al" |title=The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors |journal=Blood |volume=99 |issue=11 |pages=4200–6 |year=2002 |pmid=12010826 |doi= |url=http://www.bloodjournal.org/cgi/pmidlookup?view=long&pmid=12010826] .

*The T-cells of umbilical cord blood (UCB) have an inherent immunological immaturity [cite journal |author=Grewal SS, Barker JN, Davies SM, Wagner JE |title=Unrelated donor hematopoietic cell transplantation: marrow or umbilical cord blood? |journal=Blood |volume=101 |issue=11 |pages=4233–44 |year=2003 |pmid=12522002 |doi=10.1182/blood-2002-08-2510 |url=] , and the use of UCB stem cells in unrelated donor transplants has a reduced incidence and severity of GVHD [cite journal |author=Laughlin MJ, Barker J, Bambach B, "et al" |title=Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors |journal=N. Engl. J. Med. |volume=344 |issue=24 |pages=1815–22 |year=2001 |pmid=11407342 |doi= |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=11407342&promo=ONFLNS19] .

*Methotrexate, cyclosporin A and tacrolimus are common drugs used for GVHD prophylaxis.

*Graft-versus-host-disease can largely be avoided by performing a T-cell depleted bone marrow transplant. However these types of transplants come at a cost of diminished graft-versus-tumor effect, greater risk of engraftment failure or cancer relapse [cite journal |author=Hale G, Waldmann H |title=Control of graft-versus-host disease and graft rejection by T cell depletion of donor and recipient with Campath-1 antibodies. Results of matched sibling transplants for malignant diseases |journal=Bone Marrow Transplant. |volume=13 |issue=5 |pages=597–611 |year=1994 |pmid=8054913 |doi= |url=] , and general immunodeficiency, resulting in a patient more susceptible to viral, bacterial, and fungal infection. In a multi-center study, disease-free survival at 3 years was not different between T cell depleted and T cell replete transplants ["Lancet" 2005 Aug 27-Sep 2;366(9487):733-41] .

Treatment of GVHD

Intravenously administered corticosteroids, such as prednisone, are the standard of care in acute GVHD [cite journal |author=Goker H, Haznedaroglu IC, Chao NJ |title=Acute graft-vs-host disease: pathobiology and management |journal=Exp. Hematol. |volume=29 |issue=3 |pages=259–77 |year=2001 |pmid=11274753 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0301-472X(00)00677-9] and chronic GVHD. The use of these corticosteroids is designed to suppress the T-cell mediated immune onslaught on the host tissues; however in high doses this immune-suppression raises the risk of infections and cancer relapse. Therefore it is desirable to taper off the post-transplant high level steroid doses to lower levels, at which point the appearance of mild GVHD may be welcome, especially in HLA mis-matched patients, as it is typically associated with a graft-versus-tumor effect.

Investigational therapies for graft-versus-host disease

There are a large number of clinical trials either ongoing or recently completed in the investigation of graft-versus-host disease treatment and prevention [http://www.clinicaltrial.gov/ct2/results?term=Graft-versus-host+disease search of clinicaltrials.gov for Graft-versus-host disease] ] .

Media

* In the FOX television series "Arrested Development", the character Tobias Fünke (David Cross) was depicted as suffering from graft-versus-host-disease after receiving hair transplants. In his specific case, the graft (hair implants) was rejecting the host (Tobias).

* In the episode of the television series "House M.D." titled "Family", one of the characters suffered from GVHD after he received an unsuccessful 4/6 bone marrow transplant.

ee also

* Organ transplant
**Transplant rejection
* Immunology
** Immunosuppression
* Cancer

Further reading

* Ferrara JLM, Deeg HJ, Burakoff SJ. "Graft-Vs.-Host Disease: Immunology, Pathophysiology, and Treatment." Marcel Dekker, 1990 ISBN 0-8247-9728-0
* Polsdorfer, JR "Gale Encyclopedia of Medicine: Graft-vs.-host disease"

References

External links

Transplantation and immunology

* [http://edumed.unige.ch/apprentissage/immunologie/ Website of Geneva University about transplantation immunology]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Graft-versus-Host-Disease — Klassifikation nach ICD 10 T86.01 Akute Graft versus host Krankheit, Grad I und II T86.02 Akute Graft versus host Krankheit, Grad III und IV T86.03 …   Deutsch Wikipedia

  • Graft-versus-Host Disease — Klassifikation nach ICD 10 T86.01 Akute Graft versus host Krankheit, Grad I und II T86.02 Akute Graft versus host Krankheit, Grad III und IV T86.03 …   Deutsch Wikipedia

  • Graft-versus-host disease — A complication of bone marrow transplants in which T cells in the donor bone marrow graft go on the offensive and attack the host’s tissues. Graft versus host disease (GVHD) is seen most often in cases where the blood marrow donor is unrelated to …   Medical dictionary

  • graft-versus-host disease — noun : a bodily condition that results when T cells from a usually allogeneic tissue or organ transplant and especially a bone marrow transplant react immunologically against the recipient s antigens attacking cells and tissues, that affects… …   Useful english dictionary

  • graft-versus-host disease — graft′ ver sus host′ disease n. pat a reaction in which the cells of transplanted tissue immunologically attack the cells of the host …   From formal English to slang

  • Transfusion-associated graft versus host disease — DiseaseDisorder infobox Name = Transfusion associated graft versus host disease ICD10 = ICD10|T|80|8|t|80 ICD9 = ICD9|999.8Transfusion associated graft versus host disease (TA GvHD) is a rare complication of blood transfusion, in which the donor… …   Wikipedia

  • graft-versus-host disease — /graft verr seuhs hohst , grahft / a reaction in which the cells of transplanted tissue immunologically attack the cells of the host organism, occurring esp. in bone marrow transplants. [1970 75] * * * …   Universalium

  • graft-versus-host disease — GVHD a condition that occurs following bone marrow transplantation and sometimes blood transfusion, in which lymphocytes from the graft attack specific tissues in the host. The skin, gut, and liver are the most severely affected. Drugs that… …   The new mediacal dictionary

  • graft-versus-host disease — A disease that results when mature post thymic T cells in donor grafts (e.g., bone marrow) recognize the host as foreign and attack it …   Dictionary of microbiology

  • graft-versus-host — graft ver·sus host .vər səs hōst adj of, relating to, or caused by graft versus host disease <a graft versus host response> …   Medical dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”