- Effective nuclear charge
-
The effective nuclear charge is the net positive charge experienced by an electron in a multi-electron atom. The term "effective" is used because the shielding effect of negatively charged electrons prevents higher orbital electrons from experiencing the full nuclear charge by the repelling effect of inner-layer electrons. The effective nuclear charge experienced by the outer shell electron is also called the core charge. It is possible to determine the strength of the nuclear charge by looking at the oxidation number of the atom.
Contents
Calculating the effective nuclear charge
In an atom with one electron, that electron experiences the full charge of the positive nucleus. In this case, the effective nuclear charge can be calculated from Coulomb's law.
However, in an atom with many electrons the outer electrons are simultaneously attracted to the positive nucleus and repelled by the negatively charged electrons. The effective nuclear charge on such an electron is given by the following equation:
- Zeff = Z − S
where
- Z is the number of protons in the nucleus (atomic number), and
- S is the average number of electrons between the nucleus and the electron in question (the number of nonvalence electrons).
S can be found by the systematic application of various rule sets, the simplest of which is known as "Slater's rules" (named after John C. Slater). Douglas Hartree defined the effective Z of a Hartree-Fock orbital to be:
where
- <r>H is the mean radius of the orbital for hydrogen, and
- <r>Z is the mean radius of the orbital for an electron configuration with nuclear charge Z.
Note: Zeff is also often written Z*.
Example
Consider a sodium cation, a fluorine anion, and a neutral neon atom. Each has 10 electrons, and the number of nonvalence electrons is 2 (10 total electrons - 8 valence) but the effective nuclear charge varies because each has a different atomic number:
- Zeff(F-) = 9 − 2 = 7 +
- Zeff(Ne) = 10 − 2 = 8 +
- Zeff(Na+) = 11 − 2 = 9 +
So, the sodium cation has the largest effective nuclear charge, and thus the smallest atomic radius.
Values
Updated values of screening constants were provided by Clementi et al.[1][2]
Effective Nuclear Charges H He Z 1 2 1s 1.000 1.688 Li Be B C N O F Ne Z 3 4 5 6 7 8 9 10 1s 2.691 3.685 4.680 5.673 6.665 7.658 8.650 9.642 2s 1.279 1.912 2.576 3.217 3.847 4.492 5.128 5.758 2p 2.421 3.136 3.834 4.453 5.100 5.758 Na Mg Al Si P S Cl Ar Z 11 12 13 14 15 16 17 18 1s 10.626 11.609 12.591 13.575 14.558 15.541 16.524 17.508 2s 6.571 7.392 8.214 9.020 9.825 10.629 11.430 12.230 2p 6.802 7.826 8.963 9.945 10.961 11.977 12.993 14.008 3s 2.507 3.308 4.117 4.903 5.642 6.367 7.068 7.757 3p 4.066 4.285 4.886 5.482 6.116 6.764 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Z 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1s 18.490 19.473 20.457 21.441 22.426 23.414 24.396 25.381 26.367 27.353 28.339 29.325 30.309 31.294 32.278 33.262 34.247 35.232 2s 13.006 13.776 14.574 15.377 16.181 16.984 17.794 18.599 19.405 20.213 21.020 21.828 22.599 23.365 24.127 24.888 25.643 26.398 2p 15.027 16.041 17.055 18.065 19.073 20.075 21.084 22.089 23.092 24.095 25.097 26.098 27.091 28.082 29.074 30.065 31.056 26.047 3s 8.680 9.602 10.340 11.033 11.709 12.368 13.018 13.676 14.322 14.961 15.594 16.219 16.996 17.790 18.596 19.403 20.219 21.033 3p 7.726 8.658 9.406 10.104 10.785 11.466 12.109 12.778 13.435 14.085 14.731 15.369 16.204 17.014 17.850 18.705 19.571 20.434 4s 3.495 4.398 4.632 4.817 4.981 5.133 5.283 5.434 5.576 5.711 5.842 5.965 7.067 8.044 8.944 9.758 10.553 11.316 3d 7.120 8.141 8.983 9.757 10.528 11.180 11.855 12.530 13.201 13.878 15.093 16.251 17.378 18.477 19.559 20.626 4p 6.222 6.780 7.449 8.287 9.028 9.338 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Z 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1s 36.208 37.191 38.176 39.159 40.142 41.126 42.109 43.092 44.076 45.059 46.042 47.026 48.010 48.992 49.974 50.957 51.939 52.922 2s 27.157 27.902 28.622 29.374 30.125 30.877 31.628 32.380 33.155 33.883 34.634 35.386 36.124 36.859 37.595 38.331 39.067 39.803 2p 33.039 34.030 35.003 35.993 36.982 37.972 38.941 39.951 40.940 41.930 42.919 43.909 44.898 45.885 46.873 47.860 48.847 49.835 3s 21.843 22.664 23.552 24.362 25.172 25.982 26.792 27.601 28.439 29.221 30.031 30.841 31.631 32.420 33.209 33.998 34.787 35.576 3p 21.303 22.168 23.093 23.846 24.616 25.474 26.384 27.221 28.154 29.020 29.809 30.692 31.521 32.353 33.184 34.009 34.841 35.668 4s 12.388 13.444 14.264 14.902 15.283 16.096 17.198 17.656 18.582 18.986 19.865 20.869 21.761 22.658 23.544 24.408 25.297 26.173 3d 21.679 22.726 25.397 25.567 26.247 27.228 28.353 29.359 30.405 31.451 32.540 33.607 34.678 35.742 36.800 37.839 38.901 39.947 4p 10.881 11.932 12.746 13.460 14.084 14.977 15.811 16.435 17.140 17.723 18.562 19.411 20.369 21.265 22.181 23.122 24.030 24.957 5s 4.985 6.071 6.256 6.446 5.921 6.106 7.227 6.485 6.640 (empty) 6.756 8.192 9.512 10.629 11.617 12.538 13.404 14.218 4d 15.958 13.072 11.238 11.392 12.882 12.813 13.442 13.618 14.763 15.877 16.942 17.970 18.974 19.960 20.934 21.893 5p 8.470 9.102 9.995 10.809 11.612 12.425 See also
- Slater's rules
- Slater-type orbitals
- Electronegativity
References
- ^ Clementi, E.; Raimondi, D. L. (1963). "Atomic Screening Constants from SCF Functions". J. Chem. Phys 38 (11): 2686–2689. Bibcode 1963JChPh..38.2686C. doi:10.1063/1.1733573.
- ^ Clementi, E.; Raimondi, D. L.; Reinhardt, W. P. (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". Journal of Chemical Physics 47: 1300–1307. Bibcode 1967JChPh..47.1300C. doi:10.1063/1.1712084.
Resources
- Brown, Theodore; LeMay, H.E.; & Bursten, Bruce (2002). Chemistry: The Central Science (8th revised edition). Upper Saddle River, NJ 07458: Prentice-Hall. ISBN 0-61155-61141-5.
Categories:- Chemical bonding
Wikimedia Foundation. 2010.