Digamma function

Digamma function
Digamma function ψ(s) in the complex plane. The color of a point s encodes the value of ψ(s). Strong colors denote values close to zero and hue encodes the value's argument.

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}.

It is the first of the polygamma functions.

Contents

Relation to harmonic numbers

The digamma function, often denoted also as ψ0(x), ψ0(x) or \digamma (after the shape of the archaic Greek letter Ϝ digamma), is related to the harmonic numbers in that

\psi(n) = H_{n-1}-\gamma\!

where Hn is the n 'th harmonic number, and γ is the Euler-Mascheroni constant. For half-integer values, it may be expressed as

\psi\left(n+{\frac{1}{2}}\right) = -\gamma - 2\ln 2 + 
\sum_{k=1}^n \frac{2}{2k-1}

Integral representations

It has the integral representation

\psi(x) = \int_0^{\infty}\left(\frac{e^{-t}}{t} - \frac{e^{-xt}}{1 - e^{-t}}\right)\,dt

valid if the real part of x is positive. This may be written as

\psi(s+1)= -\gamma + \int_0^1 \frac {1-x^s}{1-x} dx

which follows from Euler's integral formula for the harmonic numbers.

Series formula

Digamma can be computed in the complex plane outside negative integers (Abramowitz and Stegun 6.3.16), using

\psi(z+1)= -\gamma +\sum_{n=1}^\infty \frac{z}{n(n+z)} \qquad z \neq -1, -2, -3, \ldots

or

\psi(z)=-\gamma+\sum_{n=0}^{\infty}\frac{z-1}{(n+1)(n+z)}=-\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+z}\right)\qquad z\neq0,-1,-2,-3,\ldots

This can be utilized to evaluate infinite sums of rational functions, i.e., \sum_{n=0}^{\infty}u_{n}=\sum_{n=0}^{\infty}\frac{p(n)}{q(n)}, where p(n) and q(n) are polynomials of n.

Performing partial fraction on un in the complex field, in the case when all roots of q(n) are simple roots,

u_{n} =\frac{p(n)}{q(n)}=\sum_{k=1}^{m}\frac{a_{k}}{n+b_{k}}.

For the series to converge,

\lim_{n\to\infty}nu_{n}=0,

or otherwise the series will be greater than harmonic series and thus diverges.

Hence

\sum_{k=1}^{m}a_{k}=0,

and



\sum_{n=0}^{\infty}u_{n}=\sum_{n=0}^{\infty}\sum_{k=1}^{m}\frac{a_{k}}{n+b_{k}}=\sum_{n=0}^{\infty}\sum_{k=1}^{m}a_{k}\left(\frac{1}{n+b_{k}}-\frac{1}{n+1}\right)=\sum_{k=1}^{m}\left(a_{k}\sum_{n=0}^{\infty}\left(\frac{1}{n+b_{k}}-\frac{1}{n+1}\right)\right)=-\sum_{k=1}^{m}a_{k}\left(\psi(b_{k})+\gamma\right)=-\sum_{k=1}^{m}a_{k}\psi(b_{k}).

With the series expansion of higher rank polygamma function a generalized formula can be given as

\sum_{n=0}^{\infty}u_{n}=\sum_{n=0}^{\infty}\sum_{k=1}^{m}\frac{a_{k}}{(n+b_{k})^{r_{k}}}=\sum_{k=1}^{m}\frac{(-1)^{r_{k}}}{(r_{k}-1)!}a_{k}\psi^{(r_{k}-1)}(b_{k}),

provided the series on the left converges.

Taylor series

The digamma has a rational zeta series, given by the Taylor series at z=1. This is

\psi(z+1)= -\gamma -\sum_{k=1}^\infty \zeta (k+1)\;(-z)^k,

which converges for |z|<1. Here, ζ(n) is the Riemann zeta function. This series is easily derived from the corresponding Taylor's series for the Hurwitz zeta function.

Newton series

The Newton series for the digamma follows from Euler's integral formula:

\psi(s+1)=-\gamma-\sum_{k=1}^\infty \frac{(-1)^k}{k} {s \choose k}

where \textstyle{s \choose k} is the binomial coefficient.

Reflection formula

The digamma function satisfies a reflection formula similar to that of the Gamma function,

\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }

Recurrence formula and characterization

The digamma function satisfies the recurrence relation

\psi(x + 1) = \psi(x) + \frac{1}{x}.


Thus, it can be said to "telescope" 1/x, for one has

\Delta [\psi] (x) = \frac{1}{x}

where Δ is the forward difference operator. This satisfies the recurrence relation of a partial sum of the harmonic series, thus implying the formula

 \psi(n)\ =\ H_{n-1} - \gamma

where \gamma\, is the Euler-Mascheroni constant.

More generally, one has

\psi(x+1) = -\gamma + \sum_{k=1}^\infty 
\left( \frac{1}{k}-\frac{1}{x+k} \right).

Actually, ψ is the only solution of the functional equation \psi(x + 1) = \psi(x) + \frac{1}{x} that is monotone on (0,\infty) and such that ψ(1) = − γ.

Gaussian sum

The digamma has a Gaussian sum of the form

\frac{-1}{\pi k} \sum_{n=1}^k 
\sin \left( \frac{2\pi nm}{k}\right) \psi \left(\frac{n}{k}\right) =
\zeta\left(0,\frac{m}{k}\right) = -B_1 \left(\frac{m}{k}\right) = 
\frac{1}{2} - \frac{m}{k}

for integers 0 < m < k. Here, ζ(s,q) is the Hurwitz zeta function and Bn(x) is a Bernoulli polynomial. A special case of the multiplication theorem is

\sum_{n=1}^k \psi \left(\frac{n}{k}\right)
 =-k(\gamma+\log k),

and a neat generalization of this is

\sum_{p=0}^{q-1}\psi(a+p/q)=q(\psi(qa)-\log(q)),

in which it is assumed that q is a natural number, and that 1-qa is not.

Gauss's digamma theorem

For positive integers m and k (with m < k), the digamma function may be expressed in terms of elementary functions as:

\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k) 
-\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right)
+2\sum_{n=1}^{\lfloor (k-1)/2\rfloor}
\cos\left(\frac{2\pi nm}{k} \right)
\ln\left(\sin\left(\frac{n\pi}{k}\right)\right)

Computation & approximation

According to J.M. Bernardo AS 103 algorithm the digamma function for x, a real number, can be approximated by

 \psi(x) = \ln(x) - \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + O\left(\frac{1}{x^8}\right)

or the asymptotic series

 \psi(x) = \ln(x) - \frac{1}{2x} + \sum_{n=1}^\infty \frac{\zeta(1-2n)}{x^{2n}}
 \psi(x) = \ln(x) - \frac{1}{2x} - \sum_{n=1}^\infty \frac{B(2n)}{2n(x^{2n})}

n as integer, where B(n) is the nth Bernoulli number for and ζ(n) is the Riemann zeta function.

Special values

The digamma function has values in closed form for rational numbers, as a result of Gauss's digamma theorem. Some are listed below:

 \psi(1) = -\gamma\,\!
 \psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma
 \psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma
 \psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma
 \psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma
 \psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma

See also

References

  • Abramowitz, M. and Stegun, I. A. (Eds.). "psi (Digamma) Function." §6.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 258-259, 1972. See section §6.4
  • Wimp, Jet (1961). "Polynomial approximations to integral transforms". Math. Comp. 15: 174–178. doi:10.1090/S0025-5718-61-99221-3. 
  • Weisstein, Eric W., "Digamma function" from MathWorld.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Digamma — This article is about the Greek letter. For the mathematical function, see digamma function. Greek alphabet …   Wikipedia

  • Digamma-Funktion — Die Digamma Funktion ψ(x) in der komplexen Zahlenebene. Die Digamma Funktion oder Psi Funktion ist in der Mathematik eine Funktion, die definiert wird als …   Deutsch Wikipedia

  • Polygamma function — In mathematics, the polygamma function of order m is defined as the ( m + 1)th derivative of the logarithm of the gamma function::psi^{(m)}(z) = left(frac{d}{dz} ight)^m psi(z) = left(frac{d}{dz} ight)^{m+1} lnGamma(z).Here :psi(z) =psi^{(0)}(z) …   Wikipedia

  • Función digamma — Ψ(s) en el plano complejo. El color de un punto s codifica el valor de Ψ(s).Colores fuertes denotan valores cercanos a cero y el tono codifica el valor del argumento. En matemáticas, la función digamma se define como la …   Wikipedia Español

  • Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… …   Wikipedia

  • Trigamma function — In mathematics, the trigamma function, denoted psi;1(z), is the second of the polygamma functions, and is defined by: psi 1(z) = frac{d^2}{dz^2} lnGamma(z).It follows from this definition that: psi 1(z) = frac{d}{dz} psi(z)where psi;(z) is the… …   Wikipedia

  • Multivariate gamma function — In mathematics, the multivariate Gamma function, Γp(·), is a generalization of the Gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and Inverse Wishart distributions. It has two …   Wikipedia

  • Beta function — This article is about Euler beta function. For other uses, see Beta function (disambiguation). In mathematics, the beta function, also called the Euler integral of the first kind, is a special function defined by for The beta function was studied …   Wikipedia

  • Hurwitz zeta function — In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments s with Re( s )>1 and q with Re( q )>0 by:zeta(s,q) = sum {n=0}^infty frac{1}{(q+n)^{sThis series …   Wikipedia

  • psi function — noun a) A function of a complex variable obtained by differentiating the logarithm of a gamma function; the digamma function b) The Schrödinger wave function …   Wiktionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”