Multivariate gamma function

Multivariate gamma function

In mathematics, the multivariate Gamma function, Γp(·), is a generalization of the Gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and Inverse Wishart distributions.

It has two equivalent definitions. One is


\Gamma_p(a)=
\int_{S>0} \exp\left(
-{\rm trace}(S)\right)
\left|S\right|^{a-(p+1)/2}
dS

where S>0 means S is positive-definite. The other one, more useful in practice, is


\Gamma_p(a)=
\pi^{p(p-1)/4}\prod_{j=1}^p
\Gamma\left[ a+(1-j)/2\right].

From this, we have the recursive relationships:


\Gamma_p(a) = \pi^{(p-1)/2} \Gamma(a) \Gamma_{p-1}(a-\tfrac{1}{2}) = \pi^{(p-1)/2} \Gamma_{p-1}(a) \Gamma[a+(1-p)/2]

Thus

  • Γ1(a) = Γ(a)
  • Γ2(a) = π1 / 2Γ(a)Γ(a − 1 / 2)
  • Γ3(a) = π3 / 2Γ(a)Γ(a − 1 / 2)Γ(a − 1)

and so on.

Derivatives

We may define the multivariate digamma function as \psi_p(a) = \frac{\partial \log\Gamma_p(a)}{\partial a} = \sum_{i=1}^p \psi(a+(1-i)/2) and the general polygamma function as \psi_p^{(n)}(a) = \frac{\partial^n \log\Gamma_p(a)}{\partial a^n} = \sum_{i=1}^p \psi^{(n)}(a+(1-i)/2)

Calculation steps

  • Since \Gamma_p(a) = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+\frac{1-j}{2}), it follows that \frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\sum_{i=1}^p \frac{\partial\Gamma(a+\frac{1-i}{2})}{\partial a}\prod_{j=1, j\neq i}^p\Gamma(a+\frac{1-j}{2}).
  • Because \frac{\partial\Gamma(a+(1-i)/2)}{\partial a} = \psi(a+(i-1)/2)\Gamma(a+(i-1)/2) (by definition of the digamma function ψ), we have \frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2) \sum_{i=1}^p \psi(a+(1-i)/2) = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2)

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… …   Wikipedia

  • Multivariate stable distribution — multivariate stable Probability density function Heatmap showing a Multivariate (bivariate) stable distribution with α = 1.1 parameters: exponent shift/location vector …   Wikipedia

  • Multivariate Student distribution — Multivariate Student parameters: location (real vector) Σ scale matrix (positive definite real matrix) n is the degree of freedom support …   Wikipedia

  • Multivariate Pólya distribution — The multivariate Pólya distribution, named after George Pólya, also called the Dirichlet compound multinomial distribution, is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter …   Wikipedia

  • Multivariate Polya distribution — The multivariate Pólya distribution, also called the Dirichlet compound multinomial distribution, is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector alpha, and a set… …   Wikipedia

  • Fonction gamma — Pour les articles homonymes, voir gamma (homonymie). Tracé de la fonction gamma le long de l axe des réels En mathématiques, la fonction gamma (ou fonction Gamma) est une fonction …   Wikipédia en Français

  • Multivariate normal distribution — MVN redirects here. For the airport with that IATA code, see Mount Vernon Airport. Probability density function Many samples from a multivariate (bivariate) Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the… …   Wikipedia

  • Generating function — This article is about generating functions in mathematics. For generating functions in classical mechanics, see Generating function (physics). For signalling molecule, see Epidermal growth factor. In mathematics, a generating function is a formal …   Wikipedia

  • Inverse-gamma distribution — Probability distribution name =Inverse gamma type =density pdf cdf parameters =alpha>0 shape (real) eta>0 scale (real) support =xin(0;infty)! pdf =frac{eta^alpha}{Gamma(alpha)} x^{ alpha 1} exp left(frac{ eta}{x} ight) cdf… …   Wikipedia

  • Matérn covariance function — In statistics, the Matérn covariance (named after the Swedish forestry statistician Bertil Matérn[1]) is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”