# Equations for a falling body

Equations for a falling body

Under normal earth-bound conditions, when objects move owing to a constant gravitational force a set of dynamical equations describe the resultant trajectories. For example, Newton's law of universal gravitation simplifies to "F" = "mg", where m is the mass of the body. This assumption is reasonable for objects falling to earth over the relatively short vertical distances of our everyday experience, but is very much untrue over larger distances, such as spacecraft trajectories.Please note that in this article any resistance from air (drag) is neglected.

History

Galileo was the first to demonstrate and then formulate these equations. He used a ramp to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of waterfn|2.

The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. For example, a person jumping headfirst from an airplane will never exceed a speed of about 200 KPH, app 124MPH , due to air resistance. The effect of air resistance varies enormously depending on the size and geometry of the falling object &ndash; for example, the equations are hopelessly wrong for a feather, which has a low mass but offers a large resistance to the air. (In the absence of an atmosphere all objects fall at the same rate, as astronaut David Scott demonstrated by dropping a hammer and a feather on the surface of the Moon.)

The equations also ignore the rotation of the Earth, failing to describe the Coriolis effect for example. Nevertheless, they are usually accurate enough for dense and compact objects falling over heights not exceeding the tallest man-made structures.

Overview

Near the surface of the Earth, use "g" = 9.8 m/s² (metres per second squared; which might be thought of as "metres per second, per second", or 32 ft/s² as "feet per second per second"), approximately. For other planets, multiply "g" by the appropriate scaling factor. It is essential to use a coherent set of units for "g", "d", "t" and "v". Assuming SI units, "g" is measured in metres per second squared, so "d" must be measured in metres, "t" in seconds and "v" in metres per second. In all cases the body is assumed to start from rest, and air resistance is neglected, or in other words, they assume constant acceleration. Generally, in Earth's atmosphere, this means all results below will be quite inaccurate after only 5 seconds of fall, after which an object's velocity will be 49 m/s (9.8 m/s² × 5 s). On an airless body like the moon or relatively airless body like Mars, with appropriate changes in g, these equations will yield accurate results over much longer times and much higher velocities.

Example: the first equation shows that, after one second, an object will have fallen a distance of 1/2 &times; 9.8 &times; 12 = 4.9 meters. After two seconds it will have fallen 1/2 &times; 9.8 &times; 22 = 19.6 metres; and so on.

NOTE for other astronomical bodies: For astronomical bodies other than Earth, and for short distances of fall at other than "ground" level, g in the above equations may be replaced by GM/r² where G is the gravitational constant, M is the mass of the astronomical body, and r is the radius from the falling object to the center of the body. Values obtained are correct only in cases where the distance of fall d is small compared with r.

Gravitational potential

For any mass distribution there is a scalar field, the gravitational potential (a scalar potential), which is the gravitational potential energy per unit mass of a point mass, as function of position. It is

$- G int\left\{1 over r\right\} dm$

where the integral is taken over all mass.Minus its gradient is the gravity field itself, and minus its Laplacian is the divergence of the gravity field, which is everywhere equal to -4π"G" times the local density.

Thus when outside masses the potential satisfies Laplace's equation (i.e., the potential is a harmonic function), and when inside masses the potential satisfies Poisson's equation with, as right-hand side, 4π"G" times the local density.

Acceleration relative to the rotating Earth

The acceleration measured on the rotating surface of the Earth is not quite the same as the acceleration that is measured for a free-falling body because of the centrifugal force. In other words, the apparent acceleration in the rotating frame of reference is the total gravity vector minus a small vector toward the north-south axis of the Earth, corresponding to staying stationary in that frame of reference.

Notes

* See the works of Stillman Drake, for a comprehensive study of Galileo and his times, the Scientific Revolution.

*Gravitation

* [http://www.gravitycalc.com Falling body equations calculator]

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Equations of motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

• Black body — As the temperature decreases, the peak of the blackbody radiation curve moves to lower intensities and longer wavelengths. The blackbody radiation graph is also compared with the classical model of Rayleigh and Jeans …   Wikipedia

• Gravitation — is a natural phenomenon by which objects with mass attract one another [http://math.ucr.edu/home/baez/physics/Relativity/GR/grav speed.html Does Gravity Travel at the Speed of Light?] , UCR Mathematics . 1998. Retrieved 3 July 2008] . In everyday …   Wikipedia

• Barometer question — The barometer question is a well known urban legend in academia. It has multiple forms, but all are based on the same premise: an examination paper in Physics which includes the question, How would you measure the height of a tall building using… …   Wikipedia

• mechanics — /meuh kan iks/, n. 1. (used with a sing. v.) the branch of physics that deals with the action of forces on bodies and with motion, comprised of kinetics, statics, and kinematics. 2. (used with a sing. v.) the theoretical and practical application …   Universalium

• General relativity — For a generally accessible and less technical introduction to the topic, see Introduction to general relativity. General relativity Introduction Mathematical formulation Resources …   Wikipedia

• Force — For other uses, see Force (disambiguation). See also: Forcing (disambiguation) Forces are also described as a push or pull on an object. They can be due to phenomena such as gravity, magnetism, or anything that might cause a mass to accelerate …   Wikipedia

• pH — For other uses, see PH (disambiguation). Acids and Bases Acid dissociation constant Acid base extraction Acid–base reaction Acid–base titration Dissociation c …   Wikipedia

• Angular momentum — For a generally accessible and less technical introduction to the topic, see Introduction to angular momentum. Classical mechanics Newton s Second Law …   Wikipedia

• Bicycle — For other uses, see Bicycle (disambiguation). A mountain bike, a popular multi use bicycle. A bicycle, also known as a bike, pushbike or cycle, is a human powered, pedal driven, single track vehicle, having two wheels attached to a frame, one… …   Wikipedia