Blancmange curve

Blancmange curve
Blancmange-function.svg

In mathematics, the blancmange curve is a fractal curve constructible by midpoint subdivision. It is also known as the Takagi curve, after Teiji Takagi who described it in 1903, or as the Takagi–Landsberg curve, a generalization of the curve. The name blancmange comes from its resemblance to a pudding of the same name. It is a special case of the more general de Rham curve.

The blancmange function is defined on the unit interval by

{\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n},

where s(x) is defined by s(x)=\min_{n\in{\bold Z}}|x-n|, that is, s(x) is the distance from x to the nearest integer. The infinite sum defining blanc(x) converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous (indeed, uniformly continuous) but nowhere differentiable.

The Takagi–Landsberg curve is a slight generalization, given by

T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)

for a parameter w; thus the blancmange curve is the case w = 1 / 2. The value H = − log 2w is known as the Hurst parameter. For w = 1 / 4, one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.

The function can be extended to all of the real line: applying the definition given above shows that the function repeats on each unit interval.

Contents

Graphical construction

The blancmange curve can be visually built up out of sawtooth functions if the infinite sum is approximated by finite sums of the first few terms. In the illustration below, progressively finer sawtooth functions (shown in red) are added to the curve at each stage.

Blancmange-approx1.svg Blancmange-approx2.svg Blancmange-approx3.svg Blancmange-approx4.svg
n = 0 n ≤ 1 n ≤ 2 n ≤ 3

Integrating the Blancmange curve

Given that the integral of blanc(x) from 0 to 1 is 1/2, the identity blanc(x) = blanc(2x) / 2 + s(x) allows the integral over any interval to be computed by the following relation. The computation is recursive with computing time on the order of log of the accuracy required.


\begin{align}
I(x) &= \int_0^x{\rm blanc}(x)\,dx,\\
I(x) &=\begin{cases}
1/2+I(x-1) & \text{if }x \geq 1\\
1/2-I(1-x) & \text{if }1/2 < x < 1 \\
I(2x)/4+x^2/2 & \text{if } 0 \leq x \leq 1/2  \\
-I(-x) & \text{if } x < 0
\end{cases} \\

\int_a^b{\rm blanc}(x)\,dx &= I(b) - I(a).
\end{align}

Relation to simplicial complexes

Let

 N=\binom{n_t}{t}+\binom{n_{t-1}}{t-1}+\ldots+\binom{n_j}{j},\quad
n_t > n_{t-1} > \ldots > n_j \geq j\geq 1.

Define the Kruskal-Katona function


\kappa_t(N)={n_t \choose t+1} + {n_{t-1} \choose t} + \dots + {n_j \choose j+1}.

The Kruskal-Katona theorem states that this is the minimum number of (t-1)-simplexes that are faces of a set of N t-simplexes.

As t and N approach infinity, κt(N) − N (suitably normalized) approaches the blancmange curve.

See also

References

Further reading

  • Allaart, Pieter C.; Kawamura, Kiko (11 October 2011), The Takagi function: a survey, arXiv:1110.1691 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Blancmange (disambiguation) — Blancmange is a jelly or pudding dessert made of milk, sugar, gelatin and flavouring.Blancmange may also be: *Blancmange curve, a fractal which is considered to resemble a blancmange. *Blancmange (band), a synthpop group active during the first… …   Wikipedia

  • De Rham curve — In mathematics, a de Rham curve is a certain type of fractal curve named in honor of Georges de Rham. The Cantor function, Césaro curve, Minkowski s question mark function, the Lévy C curve, the blancmange curve and the Koch curve are all special …   Wikipedia

  • Courbe du blancmanger — En mathématiques, la courbe du blancmanger est une courbe fractale. Elle est aussi connue comme la courbe de Takagi, d après Teiji Takagi qui l a décrite en 1903, ou comme la courbe Takagi–Landsberg, une généralisation de la courbe. Le nom… …   Wikipédia en Français

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • List of curves — This is a list of curves, by Wikipedia page. See also list of curve topics, list of surfaces, Riemann surface. Algebraic curves*Cubic plane curve *Quartic plane curve *Quintic plane curve *Sextic plane curveRational curves*Ampersand curve… …   Wikipedia

  • Modular group — For a group whose lattice of subgroups is modular see Iwasawa group. In mathematics, the modular group Γ is a fundamental object of study in number theory, geometry, algebra, and many other areas of advanced mathematics. The modular group can be… …   Wikipedia

  • Liste De Fractales Par Dimension De Hausdorff — Cet article est une liste de fractales, ordonnées par dimension de Hausdorff croissante. En mathématiques, une fractale est un ensemble dont la dimension de Hausdorff (notée δ) est strictement supérieure à la dimension topologique[1]. Sommaire 1… …   Wikipédia en Français

  • Liste de fractales — par dimension de Hausdorff Cet article est une liste de fractales, ordonnées par dimension de Hausdorff croissante. En mathématiques, une fractale est un ensemble dont la dimension de Hausdorff (notée δ) est strictement supérieure à la dimension… …   Wikipédia en Français

  • Liste de fractales par dimension de hausdorff — Cet article est une liste de fractales, ordonnées par dimension de Hausdorff croissante. En mathématiques, une fractale est un ensemble dont la dimension de Hausdorff (notée δ) est strictement supérieure à la dimension topologique[1]. Sommaire 1… …   Wikipédia en Français

  • List of Peel sessions — This is a list of artists (bands and individual musicians) who recorded at least one session for John Peel and his show on BBC Radio 1 from 1967 to his death in 2004. the first session was recorded by Tomorrow on 21 September 1967, and the last… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”