Oleksandr Mikolaiovich Sharkovsky

Oleksandr Mikolaiovich Sharkovsky
Oleksandr Sharkovsky

Oleksandr Mikolaiovich Sharkovsky (Ukrainian: Олекса́ндр Миколайович Шарко́вський) (b. December 7, 1936, Kiev) is a prominent Ukrainian mathematician most famous for developing Sharkovsky's Theorem in 1964. In 2006 he became a member of the National Academy of Sciences of Ukraine.

External links



Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

  • Théorème de Charkovski — Le théorème de Charkovski est un théorème de mathématiques portant sur l itération des fonctions continues. Il donne des contraintes sur la présence de points périodiques lorsqu on itère la fonction f, c est à dire de points x0 tels que la suite… …   Wikipédia en Français

  • List of Ukrainians — This is a partial list of famous or notable Ukrainian people. Academics Biologists/Physicians*Mykola Amosiv *Oleksandr Bohomolets *Tatiana Davydiva *Theodosius Dobzhansky *Katherine Esau *Volodymyr Filativ *Waldemar Haffkine *Dmytro Ivanovski… …   Wikipedia

  • Sharkovskii's theorem — In mathematics, Sharkovskii s theorem is a result about discrete dynamical systems. One of the implications of the theorem is that if a continuous discrete dynamical system on the real line has a periodic point of period 3, then it must have… …   Wikipedia

  • 7 de diciembre — << Diciembre >> Do Lu Ma Mi Ju Vi Sa 1 …   Wikipedia Español

  • List of mathematicians (S) — NOTOC S * S., Shrikhande S. (India, 1917 ) * Saari, Donald G. (USA, 1940 ) * Saaty, Thomas L. (USA, 1926 ) * Sabur, Alia (USA, 1989 ) * Saccheri, Giovanni Girolamo (Italy, 1667 1733) * Sachs, Gunter (Germany, 1932 ) * Sachs, Horst (USA, 1927 ) *… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”