Well-founded relation

Well-founded relation

In mathematics, a binary relation, R, is well-founded (or wellfounded) on a class X if and only if every non-empty subset of X has a minimal element with respect to R; that is, for every non-empty subset S of X, there is an element m of S such that for every element s of S, the pair (s,m) is not in R:

\forall S \subseteq X\;\, (S \neq \varnothing \to \exists m \in S\;\; \forall s \in S\;\, ( s, m) \notin R)

(Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.)

Equivalently, assuming some choice, a relation is well-founded if and only if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.

In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order.

In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo-Fraenkel set theory, asserts that all sets are well-founded.

A relation R is converse well-founded, upwards well-founded or Noetherian on X, if the converse relation R-1 is well-founded on X. In this case R is also said to satisfy the ascending chain condition.

Contents

Induction and recursion

An important reason that well-founded relations are interesting is because a version of transfinite induction can be used on them: if (X, R) is a well-founded relation, P(x) is some property of elements of X, and we want to show that

P(x) holds for all elements x of X,

it suffices to show that:

If x is an element of X and P(y) is true for all y such that y R x, then P(x) must also be true.

That is,

\forall x \in X\,((\forall y\in X\,(y\,R\,x \to P(y))) \to P(x))\to\forall x\in X\,(P(x)).

Well-founded induction is sometimes called Noetherian induction,[1] after Emmy Noether.

On par with induction, well-founded relations also support construction of objects by transfinite recursion. Let (X, R) be a set-like well-founded relation, and F a function, which assigns an object F(x, g) to each pair of an element x ∈ X and a function g on the initial segment {y: y R x} of X. Then there is a unique function G such that for every x ∈ X,

G(x)=F(x,G\vert_{\{y: y\,R\,x\}})

That is, if we want to construct a function G on X, we may define G(x) using the values of G(y) for y R x.

As an example, consider the well-founded relation (N, S), where N is the set of all natural numbers, and S is the graph of the successor function xx + 1. Then induction on S is the usual mathematical induction, and recursion on S gives primitive recursion. If we consider the order relation (N, <), we obtain complete induction, and course-of-values recursion. The statement that (N, <) is well-founded is also known as the well-ordering principle.

There are other interesting special cases of well-founded induction. When the well-founded relation is the usual ordering on the class of all ordinal numbers, the technique is called transfinite induction. When the well-founded set is a set of recursively-defined data structures, the technique is called structural induction. When the well-founded relation is set membership on the universal class, the technique is known as ∈-induction. See those articles for more details.

Examples

Well-founded relations which are not totally ordered include:

  • the positive integers {1, 2, 3, ...}, with the order defined by a < b if and only if a divides b and ab.
  • the set of all finite strings over a fixed alphabet, with the order defined by s < t if and only if s is a proper substring of t.
  • the set N × N of pairs of natural numbers, ordered by (n1, n2) < (m1, m2) if and only if n1 < m1 and n2 < m2.
  • the set of all regular expressions over a fixed alphabet, with the order defined by s < t if and only if s is a proper subexpression of t.
  • any class whose elements are sets, with the relation \in ("is an element of"). This is the axiom of regularity.
  • the nodes of any finite directed acyclic graph, with the relation R defined such that a R b if and only if there is an edge from a to b.

Examples of relations that are not well-founded include:

  • the negative integers {-1, -2, -3, …}, with the usual order, since any unbounded subset has no least element.
  • The set of strings over a finite alphabet with more than one element, under the usual (lexicographic) order, since the sequence "B" > "AB" > "AAB" > "AAAB" > … is an infinite descending chain. This relation fails to be well-founded even though the entire set has a minimum element, namely the empty string.
  • the rational numbers (or reals) under the standard ordering, since, for example, the set of positive rationals (or reals) lacks a minimum.

Other properties

If (X, <) is a well-founded relation and x is an element of X, then the descending chains starting at x are all finite, but this does not mean that their lengths are necessarily bounded. Consider the following example: Let X be the union of the positive integers and a new element ω, which is bigger than any integer. Then X is a well-founded set, but there are descending chains starting at ω of arbitrary great (finite) length; the chain ω, n − 1, n − 2, ..., 2, 1 has length n for any n.

The Mostowski collapse lemma implies that set membership is a universal well-founded relation: for any set-like well-founded relation R on a class X, there exists a class C such that (X,R) is isomorphic to (C,∈).

Reflexivity

A relation R is said to be reflexive if a R a holds for every a in the domain of the relation. Every reflexive relation on a nonempty domain has infinite descending chains, because any constant sequence is a descending chain. For example, in the natural numbers with their usual order ≤, we have 1 \geq 1 \geq 1 \geq \cdots. To avoid these trivial descending sequences, when working with a reflexive relation R it is common to use (perhaps implicitly) the alternate relation R′ defined such that a R′ b if and only if a R b and ab. In the context of the natural numbers, this means that the relation <, which is well-founded, is used instead of the relation ≤, which is not. In some texts, the definition of a well-founded relation is changed from the definition above to include this convention.

References

  1. ^ Bourbaki, N. (1972) Elements of mathematics. Commutative algebra, Addison-Wesley.
  • Just, Winfried and Weese, Martin, Discovering Modern Set theory. I, American Mathematical Society (1998) ISBN 0-8218-0266-6.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Non-well-founded set theory — Non well founded set theories are variants of axiomatic set theory which allow sets to contain themselves and otherwise violate the rule of well foundedness. In non well founded set theories, the foundation axiom of ZFC is replaced by axioms… …   Wikipedia

  • Well-quasi-ordering — In mathematics, specifically order theory, a well quasi ordering or wqo is a well founded quasi ordering with an additional restriction on sequences that there is no infinite sequence x i with x i ot le x j for all i < j . Motivation We can use… …   Wikipedia

  • Well-order — In mathematics, a well order relation (or well ordering) on a set S is a total order on S with the property that every non empty subset of S has a least element in this ordering.Equivalently, a well ordering is a well founded total order.The set… …   Wikipedia

  • False relation — False False, a. [Compar. {Falser}; superl. {Falsest}.] [L. falsus, p. p. of fallere to deceive; cf. OF. faus, fals, F. faux, and AS. fals fraud. See {Fail}, {Fall}.] 1. Uttering falsehood; unveracious; given to deceit; dishnest; as, a false… …   The Collaborative International Dictionary of English

  • Implementation of mathematics in set theory — This article examines the implementation of mathematical concepts in set theory. The implementation of a number of basic mathematical concepts is carried out in parallel in ZFC (the dominant set theory) and in NFU, the version of Quine s New… …   Wikipedia

  • Loop variant — In computer science, a loop variant is a mathematical function defined on the state space of a computer program having the property that each iteration of a loop (given its invariant) strictly decreases its value with respect to a well founded… …   Wikipedia

  • Outline of logic — The following outline is provided as an overview of and topical guide to logic: Logic – formal science of using reason, considered a branch of both philosophy and mathematics. Logic investigates and classifies the structure of statements and… …   Wikipedia

  • Termination analysis — In computer science, a termination analysis is program analysis which attempts to determine whether the evaluation of a given program will definitely terminate. Because the halting problem is undecidable, termination analysis cannot work… …   Wikipedia

  • Transfinite induction — is an extension of mathematical induction to well ordered sets, for instance to sets of ordinals or cardinals. Transfinite induction Let P(α) be a property defined for all ordinals α. Suppose that whenever P(β) is true for all β < α, then P(α) is …   Wikipedia

  • Relación bien fundada — En teoría de conjuntos, una relación bien fundada sobre una clase X es una relación binaria R sobre X tal que todo subconjunto no vacío de X tiene un elemento R mínimo; esto es: Para todo subconjunto no vacío S de X, hay un elemento m en S tal… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”