Choquet theory

Choquet theory

In mathematics, Choquet theory is an area of functional analysis and convex analysis created by Gustave Choquet. It is concerned with measures with support on the extreme points of a convex set C. Roughly speaking, all vectors of C should appear as 'averages' of extreme points, a concept made more precise by the idea of convex combinations replaced by integrals taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional (locally convex Hausdorff) topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, particularly for treating convex cones as determined by their extreme rays, and so for many different notions of positivity in mathematics.

The two ends of a line segment determine the points in between: in vector terms the segment from v to w consists of the λv + (1 − λ)w with 0 ≤ λ ≤ 1. The classical result of Hermann Minkowski says that in Euclidean space, a bounded, closed convex set C is the convex hull of its extreme point set E, so that any c in C is a (finite) convex combination of points e of E. Here E may be a finite or an infinite set. In vector terms, by assigning non-negative weights w(e) to the e in E, almost all 0, we can represent any c in C as

 c = \sum_{e\in E} w(e) e\

with

 \sum_{e\in E} w(e) = 1.\

In any case the w(e) give a probability measure supported on a finite subset of E. For any affine function f on C, its value at the point c is

f (c) = \int f(e) d w(e).

In the infinite dimensional setting, one would like to make a similar statement.

Choquet's theorem states that for a compact convex subset C in a normed space V, given c in C there exist a probability measure w supported on the set E of extreme points of C such that, for all affine function f on C.

f (c) = \int f(e) d w(e).

In practice V will be a Banach space. The original Krein–Milman theorem follows from Choquet's result. Another corollary is the Riesz representation theorem for states on the continuous functions on a metrizable compact Hausdorff space.

More generally, for V a locally convex topological vector space, the Choquet-Bishop-de Leeuw theorem[1] gives the same formal statement.

In addition to the existence of a probability measure supported on the extreme boundary that represent a given point c, one might also consider the uniqueness of such measures. It is easy to see that uniqueness does not hold even in the finite dimensional setting. One can take, for counterexamples, the convex set to be a cube or a ball in R3. Uniqueness does hold, however, when the convex set is a finite dimensional simplex. So that the weights w(e) are unique. A finite dimensional simplex is a special cases of a Choquet simplex. Any point in a Choquet simplex is represented by a unique probability measure on the extreme points.

See also

Notes

  1. ^ Errett Bishop; Karel De Leeuw. "The representations of linear functionals by measures on sets of extreme points". Annales de l'institut Fourier, 9 (1959), p. 305-331.

References

  • Asimow, L.; Ellis, A. J. (1980). Convexity theory and its applications in functional analysis. London Mathematical Society Monographs. 16. London-New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]. pp. x+266. ISBN 0-12-065340-0. MR623459. 
  • Bourgin, Richard D. (1983). Geometric aspects of convex sets with the Radon-Nikodým property. Lecture Notes in Mathematics. 993. Berlin: Springer-Verlag. pp. xii+474. ISBN 3-540-12296-6. MR704815. 
  • Phelps, Robert R. (2001). Lectures on Choquet's theorem. Lecture Notes in Mathematics. 1757 (Second edition of 1966 ed.). Berlin: Springer-Verlag. pp. viii+124. ISBN 3-540-41834-2. MR1835574. 
  • Hazewinkel, Michiel, ed. (2001), "Choquet simplex", Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/c/c022130.htm 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Choquet — may refer to: People: Alain Choquet (1901–1991), a Quebec actor and recording artist Antoine Choquet de Lindu (1712–1790), a French architect and military engineer Gustave Choquet (1915–2006), a French mathematician Yvonne Choquet Bruhat (born… …   Wikipedia

  • Choquet integral — In decision theory, a Choquet integral is a way of measuring the expected utility of an uncertain event. It is applied specifically to membership functions and capacities. In imprecise probability theory, the Choquet integral is also used to… …   Wikipedia

  • Gustave Choquet — (1 March 1915 ndash; 14 November 2006) was a French mathematician.His contributions include work in functional analysis and potential theory. He is known for creating the Choquet theory and the Choquet integral.He did postgraduate work at the… …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • List of mathematical theories — This is a list of mathematical theories, by Wikipedia page.*Algebraic K theory *Approximation theory *Automata theory *Braid theory *Brill Noether theory *Catastrophe theory *Category theory *Character theory *Choquet theory *Class field theory… …   Wikipedia

  • Convex set — A convex set …   Wikipedia

  • Convex hull — The convex hull of the red set is the blue convex set. See also: Convex set and Convex combination In mathematics, the convex hull or convex envelope for a set of points X in a real vector space V is the min …   Wikipedia

  • de Finetti's theorem — In probability theory, de Finetti s theorem explains why exchangeable observations are conditionally independent given some latent variable to which an epistemic probability distribution would then be assigned. It is named in honor of Bruno de… …   Wikipedia

  • List of convexity topics — This is a list of convexity topics, by Wikipedia page. Alpha blending Barycentric coordinates Borsuk s conjecture Bond convexity Carathéodory s theorem (convex hull) Choquet theory Closed convex function Concavity Convex analysis Convex… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”