Dirichlet's test

Dirichlet's test

In mathematics, Dirichlet's test is a method of testing for the convergence of a series. It is named after mathematician Johann Dirichlet who published it in the Journal de Mathématiques Pures et Appliquées in 1862.[1]

Contents

Statement

The test states that if {an} is a sequence of real numbers and {bn} a sequence of complex numbers satisfying

  • a_n \geq a_{n+1} > 0
  • \lim_{n \rightarrow \infty} a_n = 0
  • \left|\sum^{N}_{n=1}b_n\right|\leq M for every positive integer N

where M is some constant, then the series

\sum^{\infty}_{n=1}a_n b_n

converges.

Proof

Let S_n = \sum_{k=0}^n a_k b_k and B_n = \sum_{k=0}^n b_k. From summation by parts, we have that S_n = a_{n+1} B_n + \sum_{k=0}^n B_k (a_k - a_{k+1}). Since Bn is bounded and a_n \rightarrow 0, the first of these terms approaches zero. On the other hand, since the sequence an is decreasing, akak + 1 is positive for all k, so |B_k (a_k - a_{k+1})| \leq M(a_k - a_{k+1}). But  \sum_{k=0}^n M(a_k - a_{k+1}) = M(a_0 - a_{n+1}) \rightarrow Ma_0, so the second term converges absolutely by the comparison test. Hence Sn converges.

Applications

A particular case of Dirichlet's test is the more commonly used alternating series test for the case

b_n = (-1)^n \Rightarrow\left|\sum_{n=1}^N b_n\right| \leq 1.

Another corollary is that  \sum_{n=1}^\infty a_n \sin n converges whenever {an} is a decreasing sequence that tends to zero.

Notes

  1. ^ Démonstration d’un théorème d’Abel. Journal de mathématiques pures et appliquées 2nd series, tome 7 (1862), p. 253-255.

References

  • Hardy, G. H., A Course of Pure Mathematics, Ninth edition, Cambridge University Press, 1946. (pp. 379-380).
  • Voxman, William L., Advanced Calculus: An Introduction to Modern Analysis, Marcel Dekker, Inc., New York, 1981. (§8.B.13-15) ISBN 0-8247-6949-X.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Test de primalidad — El 39º número primo de Mersenne era el mayor conocido hasta la fecha de creación de este artículo. La cuestión de la determinación de si un número n …   Wikipedia Español

  • Test intégral de convergence — Comparaison série intégrale Les séries sont un procédé de sommation de grandeurs discrètes, l intégrale de grandeurs continues. L analogie formelle entre les deux domaines permet de faire passer des idées intéressantes de l une à l autre. La… …   Wikipédia en Français

  • Johann Peter Gustav Lejeune Dirichlet — Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet Born 13 Fe …   Wikipedia

  • Alternating series test — The alternating series test is a method used to prove that infinite series of terms converge. It was discovered by Gottfried Leibniz and is sometimes known as Leibniz s test or Leibniz criterion.A series of the form:sum {n=1}^infty a n(… …   Wikipedia

  • Pearson's chi-squared test — (χ2) is the best known of several chi squared tests – statistical procedures whose results are evaluated by reference to the chi squared distribution. Its properties were first investigated by Karl Pearson in 1900.[1] In contexts where it is… …   Wikipedia

  • Miller–Rabin primality test — The Miller–Rabin primality test or Rabin–Miller primality test is a primality test: an algorithm which determines whether a given number is prime, similar to the Fermat primality test and the Solovay–Strassen primality test. Its original version …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Série convergente — En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach, il… …   Wikipédia en Français

  • List of real analysis topics — This is a list of articles that are considered real analysis topics. Contents 1 General topics 1.1 Limits 1.2 Sequences and Series 1.2.1 Summation Methods …   Wikipedia

  • Sommation par parties — La sommation par parties est l équivalent pour les séries de l intégration par parties. On l appelle également transformation d Abel ou sommation d Abel. Sommaire 1 Énoncé 2 Similitude avec l intégration par parties 3 Applications …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”