Delta operator

Delta operator

In mathematics, a delta operator is a shift-equivariant linear operator \scriptstyle{ Q:\mathbb K[x] \longrightarrow \mathbb K[x] } on the vector space of polynomials in a variable  \scriptstyle x over a field \scriptstyle{ \mathbb K} that reduces degrees by one.

To say that \scriptstyle Q is shift-equivariant means that if \scriptstyle{ g(x) = f(x + a)}, then

{ (Qg)(x) = (Qf)(x + a)}.\,

In other words, if f is a "shift" of g, then Qf is also a shift of Qg, and has the same "shifting vector" a.

To say that an operator reduces degree by one means that if f is a polynomial of degree n, then Qf is either a polynomial of degree n − 1, or, in case n = 0, Qf is 0.

Sometimes a delta operator is defined to be a shift-equivariant linear transformation on polynomials in x that maps x to a nonzero constant. Seemingly weaker than the definition given above, this latter characterization can be shown to be equivalent to the stated definition, since shift-equivariance is a fairly strong condition.

Contents

Examples

 (\Delta f)(x) = f(x + 1) - f(x)\,
is a delta operator.
  • Differentiation with respect to x, written as D, is also a delta operator.
  • Any operator of the form
\sum_{k=1}^\infty c_k D^k
(where Dn(ƒ) = ƒ(n) is the nth derivative) with c_1\neq0 is a delta operator. It can be shown that all delta operators can be written in this form. For example, the difference operator given above can be expanded as
\Delta=e^D-1=\sum_{k=1}^\infty \frac{D^k}{k!}.
  • The generalized derivative of time scale calculus which unifies the forward difference operator with the derivative of standard calculus is a delta operator.
{(\delta f)(x) = {{ f(x+\Delta t) - f(x) }  \over {\Delta t} }},
the Euler approximation of the usual derivative with a discrete sample time Δt. The delta-formulation obtains a significant number of numerical advantages compared to the shift-operator at fast sampling.

Basic polynomials

Every delta operator Q has a unique sequence of "basic polynomials", a polynomial sequence defined by three conditions:

  • \scriptstyle p_0(x)=1 ;
  • \scriptstyle p_{n}(0)=0;
  • \scriptstyle (Qp_n)(x)=np_{n-1}(x), \; \forall n \in \mathbb N.

Such a sequence of basic polynomials is always of binomial type, and it can be shown that no other sequences of binomial type exist. If the first two conditions above are dropped, then the third condition says this polynomial sequence is a Sheffer sequence -- a more general concept.

See also

References

  • Nikol'Skii, Nikolai Kapitonovich (1986), Treatise on the shift operator: spectral function theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-15021-5 

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Delta-Operator — Laplace o operatorius statusas T sritis automatika atitikmenys: angl. delta operator; Laplacian operator vok. Delta Operator, m; Laplace Operator, m; Laplacescher Operator, m rus. дельта оператор, m; оператор Лапласа, m pranc. opérateur laplacien …   Automatikos terminų žodynas

  • delta operator — Laplace o operatorius statusas T sritis automatika atitikmenys: angl. delta operator; Laplacian operator vok. Delta Operator, m; Laplace Operator, m; Laplacescher Operator, m rus. дельта оператор, m; оператор Лапласа, m pranc. opérateur laplacien …   Automatikos terminų žodynas

  • Delta-Operator — laplasianas statusas T sritis automatika atitikmenys: angl. delta operator; Laplacian vok. Delta Operator, m; Laplace Operator, m; Laplacescher Operator, m rus. дельта оператор, m; лапласиан, m pranc. laplacien, m …   Automatikos terminų žodynas

  • delta operator — laplasianas statusas T sritis automatika atitikmenys: angl. delta operator; Laplacian vok. Delta Operator, m; Laplace Operator, m; Laplacescher Operator, m rus. дельта оператор, m; лапласиан, m pranc. laplacien, m …   Automatikos terminų žodynas

  • Delta-Operator — Laplaso operatorius statusas T sritis fizika atitikmenys: angl. delta operator; Laplacian operator vok. Delta Operator, m; Laplace Operator, m rus. дельта оператор, m; оператор Лапласа, m pranc. opérateur laplacien, m …   Fizikos terminų žodynas

  • delta operator — Laplaso operatorius statusas T sritis fizika atitikmenys: angl. delta operator; Laplacian operator vok. Delta Operator, m; Laplace Operator, m rus. дельта оператор, m; оператор Лапласа, m pranc. opérateur laplacien, m …   Fizikos terminų žodynas

  • Delta-Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Delta Force in popular culture — The special operations unit commonly known as Delta Force has been used often in popular culture; Contents 1 Books 2 Film 3 Television 4 Video Games …   Wikipedia

  • Delta Air Lines — Delta Air redirects here. For the defunct German airline, see DBA (airline). Delta Air Lines IATA DL ICAO …   Wikipedia

  • Delta — commonly refers to: Delta (letter), Δ or δ in the Greek alphabet, also used as a mathematical symbol River delta, a landform at the mouth of a river Delta Air Lines, a major U.S. airline Delta may also refer to: Contents 1 Places …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”