- Switched-mode power supply
switched-mode power supply.
A - bridge rectifier
B - Input filter capacitors
C - Transformer
D - output filter coil
E - output filter capacitors
] A switched-mode power supply, switching-mode power supply or SMPS, is an electronicpower supply unit (PSU) that incorporates a switching regulator. While alinear regulator maintains the desired output voltage by dissipating excess power in a "pass" powertransistor , the SMPS rapidly switches a power transistor between saturation (full on) and cutoff (completely off) with a variable duty cycle whose average is the desired output voltage. The resulting rectangular waveform is low-pass filtered with an inductor and capacitor. The main advantage of this method is greater efficiency because the switching transistor dissipates little power in the saturated state and the off state compared to the semiconducting state (active region). Other advantages include smaller size and lighter weight (from the elimination of low frequency transformers which have a high weight) and lower heat generation from the higher efficiency. Disadvantages include greater complexity, the generation of high amplitude, high frequency energy that the low-pass filter must block to avoidelectromagnetic interference (EMI), and aripple voltage at the switching frequency and theharmonic frequencies thereof.SMPS can be classified into four types according to the input and output waveforms, as follows.
* AC in, DC out:rectifier , off-line converter input stage.
* DC in, DC out:voltage converter , or current converter, orDC to DC converter
* AC in, AC out:frequency changer ,cycloconverter
* DC in, AC out: inverterSMPS and linear power supply comparison
There are two main types of regulated power supplies available: SMPS and linear. The reasons for choosing one type or the other can be summarized as follows.
How an SMPS works
Input rectifier stage
If the SMPS has an AC input, then the first stage is to convert the input to DC. This is called "rectification". The rectifier circuit can be configured as a voltage doubler by the addition of a switch operated either manually or automatically. This is a feature of larger supplies to permit operation from nominally 120 volt or 240 volt supplies. The rectifier produces an unregulated DC voltage which is then sent to a large filter capacitor. The current drawn from the mains supply by this rectifier circuit occurs in short pulses around the AC voltage peaks. These pulses have significant high frequency energy which reduces the
power factor . Special control techniques can be employed by the following SMPS to force the average input current to follow the sinusoidal shape of the AC input voltage thus the designer should try correcting the power factor. A SMPS with a DC input does not require this stage. An SMPS designed for AC input can often be run from a DC supply (for 230V AC this would be 330V DC), as the DC passes through the rectifier stage unchanged. It's however advisable to consult the manual before trying this, though most supplies are quite capable of such operation even though nothing is mentioned in the documentation. However, this type of use may be harmful to the rectifier stage as it will only utilize half of diodes in the rectifier for the full load. This may result in overheating of these components, and make them fail as shortcircuits. [cite web|title=DC Power Production, Delivery and Utilization, An EPRI White Paper|url=http://mydocs.epri.com/docs/CorporateDocuments/WhitePapers/EPRI_DCpower_June2006.pdf Page 9 080317 mydocs.epri.com]If an input range switch is used, the rectifier stage is usually configured to operate as a
voltage doubler when operating on the low voltage (~120 VAC) range and as a straight rectifier when operating on the high voltage (~240 VAC) range. If an input range switch is not used, then a full-wave rectifier is usually used and the downstream inverter stage is simply designed to be flexible enough to accept the wide range of dc voltages that will be produced by the rectifier stage. In higher-power SMPSs, some form of automatic range switching may be used.Inverter stage
The inverter stage converts DC, whether directly from the input or from the rectifier stage described above, to AC by running it through a power oscillator, whose output transformer is very small with few windings at a frequency of tens or hundreds of
kilohertz (kHz). The frequency is usually chosen to be above 20 kHz, to make it inaudible to humans. The output voltage is optically coupled to the input and thus very tightly controlled. The switching is implemented as a multistage (to achieve high gain)MOSFET amplifier.MOSFET s are a type oftransistor with a low on-resistance and a high current-handling capacity. Since only the last stage has a large duty cycle, previous stages can be implemented bybipolar transistor s leading to roughly the same efficiency. The second last stage needs to be of a complementary design, where one transistor charges the last Mosfet and another one discharges the Mosfet. A design using a resistor would run idle most of the time and reduce efficiency. All earlier stages do not weight into efficiency because power decreases by a factor of 10 for every stage (going backwards) and thus the earlier stages are responsible for at most 1% of the efficiency. This section refers to the block marked "Chopper" in the block diagram.Voltage converter and output rectifier
If the output is required to be isolated from the input, as is usually the case in mains power supplies, the inverted AC is used to drive the primary winding of a high-frequency
transformer . This converts the voltage up or down to the required output level on its secondary winding. The output transformer in the block diagram serves this purpose.If a DC output is required, the AC output from the transformer is rectified. For output voltages above ten volts or so, ordinary silicon diodes are commonly used. For lower voltages,
Schottky diode s are commonly used as the rectifier elements; they have the advantages of faster recovery times than silicon diodes (allowing low-loss operation at higher frequencies) and a lower voltage drop when conducting. For even lower output voltages,MOSFET s may be used as synchronous rectifiers; compared to Schottky diodes, these have even lower "on"-state voltage drops.The rectified output is then smoothed by a filter consisting of
inductor s andcapacitor s. For higher switching frequencies, components with lower capacitance and inductance are needed.Simpler, non-isolated power supplies contain an inductor instead of a transformer. This type includes "
boost converter s", "buck converter s", and the so called "buck-boost converter s". These belong to the simplest class of single input, single output converters which utilize one inductor and one active switch (MOSFET ). The buck converter reduces the input voltage, in direct proportion, to the ratio of the active switch "on" time to the total switching period, called the duty cycle. For example an ideal buck converter with a 10V input operating at a 50% duty cycle will produce an average output voltage of 5V. A feedback control loop is employed to maintain (regulate) the output voltage by varying the duty cycle to compensate for variations in input voltage. The output voltage of a "boost converter" is always greater than the input voltage and the buck-boost output voltage is inverted but can be greater than, equal to, or less than the magnitude of its input voltage. There are many variations and extensions to this class of converters but these three form the basis of almost all isolated and non-isolated DC to DC converters. By adding a second inductor the Ćuk and SEPIC converters can be implemented or by adding additional active switches various bridge converters can be realised.Other types of SMPSs use a
capacitor -diode voltage multiplier instead of inductors and transformers. These are mostly used for generating high voltages at low currents. The low voltage variant is calledcharge pump .Regulation
A
feedback circuit monitors the output voltage and compares it with a reference voltage, which is set manually or electronically to the desired output. If there is an error in the output voltage, the feedback circuit compensates by adjusting the timing with which the MOSFETs are switched on and off. This part of the power supply is called the switching regulator. The "Chopper controller" shown in the block diagram serves this purpose. Depending on design/safety requirements, the controller may or may not contain an isolation mechanism (such as opto-couplers) to isolate it from the DC output. Switching supplies in computers, TVs and VCRs have these opto-couplers to tightly control the output voltage."Open-loop regulators" do not have a feedback circuit. Instead, they rely on feeding a constant voltage to the input of the transformer or inductor, and assume that the output will be correct. Regulated designs work against the
parasitic capacity of the transformer or coil, monopolar designs also against themagnetic hysteresis of the core.The feedback circuit needs power to run before it can generate power,so an additional non-switching power-supply for stand-by is added.
Transformer Design
SMPS transformers run at high frequency. Most of the cost savings (and space savings) in "off-line" power supplies come from the fact that a high frequency transformer is a lot smaller than the 50/60 Hz transformers used before SMPS.
There are several differences in the design of transformers for 50 Hz vs 500 kHz. Firstly a low frequency transformer usually transfers energy through its core (soft iron), while the (usually ferrite) core of a high frequency transformer limits leakage. Since the waveforms in a SMPS are generally high speed (PWM square waves), the wiring must be capable of supporting high harmonics of the base frequency due to the skin effect, which is a major source of power loss.
Power factor
Simple "off-line" switched mode power supplies incorporate a simple full wave rectifier connected to a large energy storing capacitor. Such SMPSs draw current from the AC line in short pulses when the mains instantaneous voltage exceeds the voltage across this capacitor. During the remaining portion of the AC cycle the capacitor provides energy to the power supply. As a result, the input current of such basic switched mode power supplies has high
harmonic content and relatively lowpower factor . This creates extra load on utility lines, increases heating of the utilitytransformer s and standard AC electric motors, and may cause stability problems in some applications such as in emergency generator systems or aircraft generators. Harmonics can be removed through the use of filter banks but the filtering is expensive, and the power utility may require a business with a very low power factor to purchase and install the filtering onsite.In 2001 the European Union put into effect the standard IEC/EN61000-3-2 to set limits on the harmonics of the AC input current up to the 40th harmonic for equipment above 75 W. The standard defines four classes of equipment depending on its type and current waveform. The most rigorous limits (class D) are established for personal computers, computer monitors, and TV receivers. In order to comply with these requirements modern switched-mode power supplies normally include an additional
power factor correction (PFC) stage.Putting a current regulated boost chopper stage after the off-line rectifier (to charge the storage capacitor) can help correct the power factor, but increases the complexity (and cost).
Types
Switched-mode power supplies can be classified according to the circuit topology. [cite web|title=ON Semiconductor SMPS Power Supply Design Manual|url=? 071104]
* Only for non human accessible equipment, otherwise <42,5V and 8,0A limit apply for UL, CSA, VDE approval.Quasiresonant ZCS/ZVS
A quasiresonant ZCS/ZVS switch (Zero Current/Zero Voltage) is a design where "each switch cycle delivers a quantized 'packet' of energy to the converter output, and switch turn-on and turn-off occurs at zero current and voltage, resulting in an essentially lossless switch." [http://www.edn.com/index.asp?layout=article&articleid=CA6418217 EDN: Comparing dc/dc converters' noise-related performance] ]
Applications
Switched-mode PSUs in domestic products such as
personal computer s often have universal inputs, meaning that they can accept power from most mains supplies throughout the world, with rated frequencies from 50 Hz to 60 Hz and voltages from 100 V to 240 V (although a manual voltage "range" switch may be required). In practice they will operate from a much wider frequency range and often from a DC supply as well.In 2006,Intel proposed the use of a single 12 V supply inside PCs, due to the high efficiency of switch mode supplies directly on the PCB.Citequote|date=October 2008Most modern desktop and laptop computers already have a DC-DC converter on the motherboard, to step down the voltage from the PSU or the battery to the
CPU core voltage -- as low as 0.8 V for a low voltage CPU to typically 1.2-1.5 V for a desktop CPU as of2007 . Most laptop computers also have a DC-AC inverter to step up the voltage from the battery to drive thebacklight , typically around 1000 Vrms. [cite web|title=How to Backlight an LCD - 10/25/2004 - Design News|url=http://designnews.com/article/CA473494.html 080224 designnews.com]Certain applications, such as in
automobile industry and in some industrial settings, DC supply is chosen to avoid hum and interference and ease the integration of capacitors and batteries used to buffer the voltage. Most small aircraft use 28 volt DC, but larger aircraft often use 120 V AC at 400 Hz, though they often have a DC bus as well. Some submarines like the SovietAlfa class submarine utilised two synchronous generators providing a variable three-phase current, 2 x 1500 kW, 400 V, 400 Hz. [cite web|title=705 Alfa class | Russian Arms, Military Technology, Analysis of Russia's Military Forces|url=http://warfare.ru/?catid=306&linkid=1762 080325 warfare.ru]In the case of TV sets, for example, one can test the excellent regulation of the power supply by using a
variac . For example, in some models made byPhilips , the power supply starts when the voltage reaches around 90 volts. From there, one can change the voltage with the variac, and go as low as 40 volts and as high as 260 (known such case that voltage was 360), and the image will show absolutely no alterations. Fact|date=May 2007Terminology
The term switchmode was widely used until
Motorola trademarked SWITCHMODE(TM), for products aimed at the switching-mode power supply market, and started to enforce their trademark. "Switching-mode power supply", "switching power supply" and "switching regulator" are used to refer to this type of power supply.cite news | first=Jerrold | last=Foutz | coauthors= | title=Switching-Mode Power Supply Design Tutorial Introduction | date= | publisher= | url =http://www.smpstech.com/tutorial/t01int.htm | work = | pages = | accessdate = 2008-10-06 | language = ]See also
*
Transformer
*Leakage inductance
*DC to DC converter
*Switching amplifier External links
* [http://www.smpstech.com/tutorial/t00con.htm Switching-Mode Power Supply Design]
* [http://www.smps.us/Unitrode.html Unitrode Power Supply Design Seminar Books Online]
* [http://www.smps.com/ Switching Power Supply design, PSpice simulation]
* [http://www.hills2.u-net.com/electron/smps.htm Switched Mode Power Supplies] . A fairly detailed discussion of converter types and control schemes.
* [http://www.powerdesigners.com/InfoWeb/design_center/articles/DC-DC/converter.shtm] . A general description of DC-DC converters.
* [http://www.powersupplies.net/ Online Power Supplies manufacturers database]
* [http://www.maxim-ic.com/appnotes.cfm/appnote_number/2031/CMP/WP-30 DC-DC Converter Tutorial] This article outlines the different types of switching regulators used in DC-DC conversion.
* [http://www.national.com/an/AN/AN-556.pdf Introduction to power supplies] -National Semiconductor
* [http://www.powerint.com/greenroom/regulations.htm Compendium and database of power supply efficiency regulations]
* [http://www.gotopower.com/ Power Supplies industry press releases, jobs, design discussions]
* [http://focus.ti.com/lit/ml/sluw001d/sluw001d.pdf SMPS Topologies Poster from TI]
* [http://schmidt-walter.eit.h-da.de/smpshome/ A useful Web calculator and theory text for various SMPS topologies]Book References
* AN19, Application Notes , LT1070 design Manual, an extensive introduction in Buck, Boost, CUK , Inverter application with Integrated circuit. Carl Nelson (download as PDF from http://www.linear.com/designtools/app_notes.jsp)
* Abraham I. Pressman (1997). "Switching Power Supply Design". McGraw-Hill. ISBN 0-07-052236-7.
* Ned Mohan, Tore M. Undeland, William P. Robbins (2002). "Power Electronics : Converters, Applications, and Design". Wiley. ISBN 0-471-22693-9.
* Muhammad H. Rashid (2003). "Power Electronics : Circuits, Devices, and Applications". Prentice Hall. ISBN 0-13-122815-3.
* Fang Lin Luo, Hong Ye (2004). "Advanced DC/DC Converters". CRC Press. ISBN 0-8493-1956-0.
* Mingliang Liu (2006). "Demystifying Switched-Capacitor Circuits". Elsevier. ISBN 0-7506-7907-7.
* Fang Lin Luo, Hong Ye, Muhammad H. Rashid (2005). "Power Digital Power Electronics and Applications". Elsevier. ISBN 0-12-088757-6.
* Robert W. Erickson & Dragan Maksimovic (2001). "Fundamentals of Power Electronics". Second edition. ISBN 0-7923-7270-0.
* Marty Brown, "Power Supply Cookbook". Newnes. 2nd ed 2001. ISBN 0-7506-7329-X.
* Christophe Basso, "Switch-Mode Power Supplies: SPICE Simulations and Practical Designs". McGraw-Hill. ISBN 0071508589.References
* [http://www.analog.com/library/analogDialogue/archives/41-12/switching_regulator.html DC-to-DC Switching-Regulator Insights—Achieving Longer Battery Life in DSP Systems]
Wikimedia Foundation. 2010.