- Mira variable
-
Mira variables ( /ˈmaɪrə/), named after the star Mira, are a class of pulsating variable stars characterized by very red colors, pulsation periods longer than 100 days, and light amplitudes greater than one magnitude. They are red giant stars in the very late stages of stellar evolution (the asymptotic giant branch) that will expel their outer envelopes as planetary nebulae and become white dwarfs within a few million years.
Mira variables are believed to be stars with less than two solar masses, but can be thousands of times more luminous than the Sun due to their very large, distended envelopes. They are believed to be pulsating due to the entire star expanding and contracting. This produces a change in temperature along with radius, both of which factors cause the variation in luminosity. The pulsation period is a function of the mass and radius of the star. Early models of Mira stars assumed that the star remained spherically symmetric during this process (largely to keep the computer modelling simple, rather than for physical reasons). A recent survey of Mira variable stars found that 75% of the Mira stars which could be resolved using the IOTA telescope are not spherically symmetric,[1] a result which is consistent with previous images of individual Mira stars,[2][3][4] so there is now pressure to do realistic three dimensional modelling of Mira stars on supercomputers.
Though most Mira variables share many similarities in behavior and structure, they are a heterogeneous class of variables due to differences in age, mass, pulsation mode, and chemical composition. For example, many, such as R Leporis, have spectra dominated by carbon, suggesting that material from the core of the star has been transported to the surface. This material often forms dust shrouds around the star, which also contribute to periodic dimming and brightening. A few Mira variables are also known to be natural maser sources.
A small subset of Miras appear to change their period over time—the period increases or decreases by a substantial amount (up to a factor of three) over the course of several decades to a few centuries. This is believed to be caused by thermal pulses, where a shell of helium near the core of the star temporarily becomes hot and dense enough to undergo nuclear fusion. This changes the structure of the star, which manifests itself as a change in period. This process is predicted to happen to all Mira variables, but the relatively short duration of thermal pulses (a few thousand years) over the asymptotic giant branch lifetime of the star (a few million years), means we only see it in a few of the several thousand Mira stars known, possibly in R Hydrae.[5] However, most Mira variables exhibit slight cycle-to-cycle changes in period, probably caused by nonlinear behavior in the stellar envelope including deviations from spherical symmetry.
Mira variables are popular targets for amateur astronomers interested in variable star observations, because of their dramatic changes in brightness. Some Mira variables (including Mira itself) have reliable observations stretching back well over a century.
See also
References
- ^ First Surface-resolved Results with the IOTA Imaging Interferometer: Detection of Asymmetries in AGB stars, 2006
- ^ Optical aperture synthetic images of the photosphere and molecular atmosphere of Mira, 1992
- ^ Asymmetries in the atmosphere of Mira, 1991
- ^ Surface imaging of long-period variable stars, 1999
- ^ The evolution of the Mira variable R Hydrae
Variable stars Pulsating Cepheids and
cepheid-likeBlue-white with
earlyspectraBeta Cephei · PV TelescopiiMira · Semiregular · Slow irregularOtherEruptive Giants and
supergiantsEruptive binaryCataclysmic
or explosiveRotating Non-sphericalEllipsoidalStellar spotsFK Comae Berenices · BY DraconisMagnetic fieldsEclipsing Categories:- Mira variables
Wikimedia Foundation. 2010.