Micrometeoroid

Micrometeoroid
Micrometeoroid collected from the Antarctic snow

A micrometeoroid is a tiny meteoroid; a small particle of rock in space, usually weighing less than a gram. A micrometeor or micrometeorite is such a particle that enters the Earth's atmosphere or falls to Earth.

Contents

Scientific interest

Micrometeoroids are very small pieces of rock or metal broken off from larger chunks of rock and debris often dating back to the birth of the solar system. Micrometeoroids are extremely common in space. Tiny particles are a major contributor to space weathering processes. When they hit the surface of the Moon, or any airless body (Mercury, the asteroids, etc.), the resulting melting and vaporization causes darkening and other optical changes in the regolith. In order to understand the micrometeoroid population better, a number of spacecraft (including Lunar Orbiter 1, Luna 3, Mars 1 and Pioneer 5) have carried micrometeoroid detectors.

In 1957 Hans Peterson conducted one of the first direct measurements of the fall of space dust on the Earth, estimating it to be 14,300,000 tons per year.[1] If this were true, then the Moon would be covered to a very great depth as there are limited forms of erosion to remove this material. In 1961 Arthur C. Clarke popularized this possibility in his novel A Fall of Moondust. This was cause for some concern among the groups attempting to land on the Moon, so a series of new studies followed to better characterize the issue. This included the launch of several spacecraft designed to directly measure the micrometeorite flux (Pegasus satellite program) or directly measure the dust on the surface of the Moon (Surveyor Program). These showed that the flux was much lower than earlier estimates, around 10,000 to 20,000 tons per year, and that the surface of the Moon is relatively rocky.[2]

Micrometeoroids have less stable orbits than meteoroids, due to their greater surface area to mass ratio. Micrometeoroids that fall to Earth can provide information on millimeter scale heating events in the solar nebula. Micrometeorites (as they are known upon arrival at the Earth's surface) can only be collected in areas where there is no terrestrial sedimentation, typically polar regions. Ice is collected and then melted and filtered so the micrometeorites can be extracted under a microscope.

Sufficiently small micrometeoroids avoid significant heating on entry into the Earth's atmosphere.[3] Collection of such particles by high flying aircraft began in the 1970s,[4] since which time these samples of stratosphere-collected interplanetary dust (called Brownlee particles before their extraterrestrial origin was confirmed) have become an important component of the extraterrestrial materials available for study in laboratories on Earth.

Effect on spacecraft operations

Micrometeoroids pose a significant threat to space exploration. Their velocities relative to a spacecraft in orbit can be on the order of kilometers per second, and resistance to micrometeoroid impact is a significant design challenge for spacecraft and space suit designers (See Thermal Micrometeoroid Garment). While the tiny sizes of most micrometeoroids limits the damage incurred, the high velocity impacts will constantly degrade the outer casing of spacecraft in a manner analogous to sandblasting. Long term exposure can threaten the functionality of spacecraft systems.

Impacts by small objects with extremely high velocity are a current area of research in terminal ballistics. Accelerating objects up to such velocities is difficult; current techniques include linear motors and shaped charges. The risk is especially high for objects in space for long periods of time, such as satellites. They also pose major engineering challenges in theoretical low-cost lift systems such as rotovators, space elevators, and orbital airships.

See also

External links

Footnotes

  1. ^ Pettersson, Hans. "Cosmic Spherules and Meteoritic Dust." Scientific American, Volume 202 Issue 2, February 1960, pp. 123–132.
  2. ^ Snelling, Andrew and David Rush. "Moon Dust and the Age of the Solar System." Creation Ex-Nihilo Technical Journal, Volume 7, Number 1, 1993, p. 2–42.
  3. ^ P. Fraundorf (1980) The distribution of temperature maxima for micrometeorites decelerated in the Earth's atmosphere without melting Geophys. Res. Lett. 10:765-768.
  4. ^ D. E. Brownlee, D. A. Tomandl and E. Olszewski (1977) Interplanetary dust: A new source of extraterrestrial material for laboratory studies, Proc. Lunar Sci. Conf. 8th:149-160.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • micrometeoroid — [mī΄krəmēt′ē ər oid΄] n. 〚 MICRO + METEOROID〛 an extremely small meteoroid * * * mi·cro·me·te·or·oid (mī krō mēʹtē ə roid ) n. A very small, often dust sized meteoroid. * * * …   Universalium

  • micrometeoroid — [mī΄krəmēt′ē ər oid΄] n. [ MICRO + METEOROID] an extremely small meteoroid …   English World dictionary

  • micrometeoroid — noun Date: 1961 micrometeorite 2 …   New Collegiate Dictionary

  • micrometeoroid — noun an extraterrestrial particle less than a millimeter in size See Also: micrometeorite …   Wiktionary

  • micrometeoroid — mi·cro·meteoroid …   English syllables

  • micrometeoroid — noun a meteorite or meteoroid so small that it drifts down to earth without becoming intensely heated in the atmosphere • Syn: ↑micrometeorite, ↑micrometeor • Derivationally related forms: ↑micrometeoritic (for: ↑micrometeorite) …   Useful english dictionary

  • Thermal Micrometeoroid Garment — An (Integrated) Thermal Micrometeoroid Garment (TMG or ITMG) is the outer layer of a space suit. The TMG has three functions: to insulate the suit occupant and prevent heat loss, to shield the occupant from harmful solar radiation, and to protect …   Wikipedia

  • MDIM — Micrometeoroid Debris Impact Monitor Contributor: LaRC …   NASA Acronyms

  • MMOD — Micrometeoroid/Orbital Debris Contributor: MSFC …   NASA Acronyms

  • Rings of Saturn — The full set of main rings, imaged as Saturn eclipsed the Sun from the vantage of the Cassini spacecraft on 15 September 2006 (brightness is exaggerated). The pale blue dot at the 10 o clock position, outside the main rings and just inside the G… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”