- Sedimentation
Sedimentation describes the motion of
molecule s insolution s or particles in suspensions in response to an external force such as gravity,centrifugal force or electric force. Sedimentation may pertain to objects of various sizes, ranging from suspensions of dust and pollen particles to cellular suspensions tosolution s of singlemolecule s such asprotein s andpeptide s. Even small molecules such asaspirin can be sedimented, although it can be difficult to apply a sufficiently strong force to produce significant sedimentation.In a sedimentation experiment, the applied force accelerates the particles to a
terminal velocity at which the applied force is exactly canceled by an opposing drag force. For small enough particles (lowReynolds number ), the drag force varies linearly with theterminal velocity , i.e., (Stokes flow ) where "f" depends only on the properties of the particle and the surrounding fluid. Similarly, the applied force generally varies linearly with some coupling constant (denoted here as "q") that depends only on the properties of the particle, . Hence, it is generally possible to define asedimentation coefficient that depends only on the properties of the particle and the surrounding fluid. Thus, measuring "s" can reveal underlying properties of the particle.In many cases, the motion of the particles is blocked by a hard boundary; the resulting accumulation of particles at the boundary is called a
sediment . The concentration of particles at the boundary is opposed by thediffusion of the particles.The sedimentation of particles under gravity is described by the
Mason-Weaver equation , which has a simple exact solution. The sedimentation coefficient "s" in this case equals , where is thebuoyant mass .The sedimentation of particles under the
centrifugal force is described by theLamm equation , which likewise has an exact solution. The sedimentation coefficient "s" also equals , where is the buoyant mass. However, the Lamm equation differs from the Mason-Weaver equation because the centrifugal force depends on radius from the origin of rotation, whereas gravity is presumed constant. The Lamm equation also has extra terms, since it pertains to sector-shaped cells, whereas the Mason-Weaver equation pertains to box-shaped cells (i.e., cells whose walls are aligned with the three Cartesian axes).Particles with a charge or dipole moment can be sedimented by an
electric field orelectric field gradient , respectively. These processes are calledelectrophoresis anddielectrophoresis , respectively. For electrophoresis, the sedimentation coefficient corresponds to the particle charge divided by its drag (the electrophoretic mobility). Similarly, fordielectrophoresis , the sedimentation coefficient equals the particle's electric dipole moment divided by its drag.ee also
*
Coagulation (disambiguation)
*Flocculation
Wikimedia Foundation. 2010.