- Thermoplastics
A thermoplastic is a
plastic thatmelt s to a liquid when heated and freezes to abrittle , veryglass y state when cooled sufficiently. Most thermoplastics are high-molecular-weightpolymer s whose chains associate through weakVan der Waals force s (polyethylene ); stronger dipole-dipole interactions andhydrogen bond ing (nylon ); or even stacking ofaromatic rings (polystyrene ). Thermoplastic polymers differ from thermosetting polymers (Bakelite ; vulcanizedrubber ) as they can, unlike thermosetting polymers, be remelted and remoulded. Many thermoplastic materials areaddition polymer s; e.g.,vinyl chain-growth polymers such as polyethylene andpolypropylene .The difference between thermoplastics and
thermosetting plastics is that thermoplastics become soft, remoldable and weldable when heat is added. Thermosetting plastics however can not be welded or remolded when heated, simply burning instead. On the other hand, once a thermosetting is cured it tends to be stronger than a thermoplastic.Temperature dependence
Thermoplastics are elastic and flexible above a
glass transition temperature "T"g, specific for each one — the midpoint of atemperature range in contrast to the sharpmelting point andfreezing point of a purecrystal line substance likewater . Below a second, higher melting temperature, "T"m, also the midpoint of a range, most thermoplastics have crystalline regions alternating with amorphous regions in which the chains approximaterandom coil s. The amorphous regions contribute elasticity and the crystalline regions contribute strength and rigidity, as is also the case for non-thermoplasticfibrous protein s such assilk . (Elasticity does not mean they are particularly stretchy; e.g., nylonrope andfishing line .) Above "T"m all crystalline structure disappears and the chains become randomly inter dispersed. As the temperature increases above "T"m,viscosity gradually decreases without any distinct phase change.Thermoplastics can go through melting/freezing cycles repeatedly and the fact that they can be reshaped upon reheating gives them their name. This quality makes thermoplastics recyclable. The processes required for recycling vary with the thermoplastic. The plastics used for pop bottles are a common example of thermoplastics that can be and are widely recycled. Animal horn, made of the
protein α-keratin, softens on heating, is somewhat reshapable, and may be regarded as a natural, quasi-thermoplastic material.Some thermoplastics normally do not crystallize: they are termed "amorphous" plastics and are useful at temperatures below the "T"g. They are frequently used in applications where clarity is important. Some typical examples of amorphous thermoplastics are
PMMA , PS and PC. Generally, amorphous thermoplastics are less chemically resistant and can be subject tostress cracking . Thermoplastics will crystallize to a certain extent and are called "semi-crystalline" for this reason. Typical semi-crystalline thermoplastics are PE, PP, PBT and PET. The speed and extent to which crystallization can occur depends in part on the flexibility of the polymer chain. Semi-crystalline thermoplastics are more resistant to solvents and other chemicals. If the crystallites are larger than the wavelength of light, the thermoplastic is hazy or opaque.Semi-crystalline thermoplastics become less brittle above "T"g. If a plastic with otherwise desirable properties has too high a "T"g, it can often be lowered by adding a low-molecular-weightplasticizer to the melt before forming (Plastics extrusion ; molding) and cooling. A similar result can sometimes be achieved by adding non-reactiveside chain s to themonomer s beforepolymerization . Both methods make the polymer chains stand off a bit from one another. Before the introduction of plasticizers,plastic automobile parts often cracked in coldwinter weather . Another method of lowering "T"g (or raising "T"m) is to incorporate the original plastic into acopolymer , as withgraft copolymer s of polystyrene, or into acomposite material . Lowering "T"g is not the only way to reduce brittleness. Drawing (and similar processes that stretch or orient the molecules) or increasing the length of the polymer chains also decrease brittleness.Although modestly vulcanized natural and synthetic rubbers are stretchy, they are
elastomer ic thermosets, not thermoplastics. Each has its own "T"g, and will crack and shatter when cold enough so that the crosslinked polymer chains can no longer move relative to one another. But they have no "T"m and will decompose at high temperatures rather than melt. Recently,thermoplastic elastomer s have become available!Terminology
The literature on thermoplastics is huge, and can be quite confusing, as the same chemical can be available in many different forms (for example, at different molecular weights), which might have quite different physical properties. The same chemical can be referred to by many different tradenames, by different abbreviations; two chemical compounds can share the same name; a good example of the latter is the word "Teflon" which is used to refer to a specific polymer (PTFE); to related polymers such as PFA, and generically to
fluoropolymer s.Furthermore, over the last 30 years, there has been tremendous change in the plastics industry, with many companies going out of business or merging into other companies. Many production plants frequently changed hands or have been relocated to emerging countries in Eastern Europe or Asia, with different trademarks.
Testing
Testing of thermoplastics can take various forms.
Tensile tests — ISO 527 -1/-2 and ASTM D 638 set out the standardized test methods. These standards are technically equivalent. However they are not fully comparable because of the difference in testing speeds. The modulus determination requires a high accuracy of ± 1 micrometer for the
dilatometer .Flexural tests — 3-points flexural tests are among the most common and classic methods for semi rigid and rigid plastics.
Pendulum impact tests — impact tests are used to measure the behavior of materials at higher deformation speeds. Pendulum impact testers are used to determine the energy required to break a standardized specimen by measuring the height to which the pendulum hammer rises after impacting the test piece.
List of thermoplastics
*
Acrylonitrile butadiene styrene (ABS)
* Acrylic (PMMA)
*Celluloid
*Cellulose acetate
*Ethylene-Vinyl Acetate (EVA)
* Ethylene vinyl alcohol (EVOH)
* Fluoroplastics (PTFE, alongside with FEP, PFA, CTFE, ECTFE, ETFE)
*Ionomer s
*Kydex , a trademarked acrylic/PVCalloy
*Liquid Crystal Polymer (LCP)
*Polyacetal (POM or Acetal)
* Polyacrylates (Acrylic)
*Polyacrylonitrile (PAN or Acrylonitrile)
*Polyamide (PA or Nylon)
*Polyamide-imide (PAI)
*Polyaryletherketone (PAEK or Ketone)
*Polybutadiene (PBD)
*Polybutylene (PB)
*Polybutylene terephthalate (PBT)
*Polycaprolactone (PCL)
*Polychlorotrifluoroethylene (PCTFE)
*Polyethylene terephthalate (PET)
*Polycyclohexylene dimethylene terephthalate (PCT)
*Polycarbonate (PC)
*Polyhydroxyalkanoates (PHAs)
*Polyketone (PK)
*Polyester
*Polyethylene (PE)
*Polyetheretherketone (PEEK)
*Polyetherimide (PEI)
*Polyethersulfone (PES)- seePolysulfone
*Polyethylenechlorinates (PEC)
*Polyimide (PI)
*Polylactic acid (PLA)
*Polymethylpentene (PMP)
*Polyphenylene oxide (PPO)
*Polyphenylene sulfide (PPS)
*Polyphthalamide (PPA)
*Polypropylene (PP)
*Polystyrene (PS)
*Polysulfone (PSU)
*Polytrimethylene terephthalate (PTT)
*Polyurethane (PU)
*Polyvinyl acetate (PVA)
*Polyvinyl chloride (PVC)
*Polyvinylidene chloride (PVDC)
*Spectralon
*Styrene-acrylonitrile (SAN)ee also
*
Thermosetting plastic
*Plastic
*Nurdle References
Wikimedia Foundation. 2010.