Label-free quantification

Label-free quantification

Label-free quantification is a method in mass spectrometry that aims to determine the differential expression level of proteins in two or more biological samples. Unlike other methods for protein quantification, label-free quantification does not use a stable isotope containing compound to chemically bind to and thus label the protein.[1][2]

Contents

Implementation

Label-free quantification is based on precursor signal intensity, which is, in most cases applied to data acquired on high mass precision spectrometers equipped with the new generation of time-of-flight (ToF), fourier transform ion cyclotron resonance (FTICR), or Orbitrap mass analyzers. The high-resolution power facilitates the extraction of peptide signals on the MS1 level and thus uncouples the quantification from the identification process. This is not true for another method of label-free quantification, spectral counting, which simply counts the number of spectra identified for a given peptide in different biological samples and then integrates the results for all measured peptides of the protein(s) that are quantified.

The computational framework of label free approach includes detecting peptides, matching the corresponding peptides across multiple LC-MS data, selecting discriminatory peptides.[3][4]

Intact protein expression spectrometry (IPEx) is a label-free quantification approach in mass spectrometry under development by the analytical chemistry group at the United States Food and Drug Administration Center for Food Safety and Applied Nutrition and elsewhere. Intact proteins are analyzed by an LCMS instrument, usually a quadrupole time-of-flight in profile mode, and the full protein profile is determined and quantified using data reduction software. Early results are very encouraging. In one study, two groups of treatment replicates from mammalian samples (different organisms with similar treatment histories, but not technical replicates) show dozens of low CV protein biomarkers, suggesting that IPEx is a viable technology for studying protein expression. [5]

Detecting peptides

Typically, peptide signals are detected at the MS1 level and distinguished from chemical noise through their characteristic isotopic pattern. These patterns are then tracked across the retention time dimension and used to reconstruct a chromatographic elution profile of the mono-isotopic peptide mass. The total ion current of the peptide signal is then integrated and used as a quantitative measurement of the original peptide concentration. For each detected peptide, all isotopic peaks are first found and the charge state is then assigned.

While the first method, introduced above, has problems due to the identity of the peptide precursor ion that is being measured which, in high-throughput studies, could easily be a completely different peptide happening to display a similar m/z ratio and elutes at the same time or overlapping with other peptides.

The second method has problems due to the fact that the peptides are identified thus making it necessary to run an additional MS/MS scan which takes time and therefore reduces the resolution of the experiment.

Matching corresponding peptides

In contrast to differential labelling, every biological specimen needs to be measured separately in a label-free experiment. The extracted peptide signals are then mapped across few or multiple LC-MS measurements using their coordinates on the mass to charge and retention time dimension. Data from high mass precision instruments greatly facilitate this process and increase the certainty of matching correct peptide signals across runs. In addition to the m/z dimension, the TR coordinate is used to map corresponding peptides between runs.

Clearly, differential processing of biological samples makes it necessary to have a standard which can be used to adjust the results. Peptides that are not expected to change in their expression levels in different biological samples may be used for this purpose. However, not all peptides ionize well and therefore the choice of candidates should be done after an initial study which should only characterize the protein content of the biological samples that will be investigated.

Selecting discriminatory peptides

Finally, sophisticated normalization methods are used to remove systematic artefacts in the peptide intensity values between LC-MS measurements. Then, discriminatory peptides are identified by selecting the peptides whose normalized intensities are different (e.g., p-value < 0.05) among multiple groups of samples.

In addition, newer hybrid mass spectrometers like LTQ OrbiTrap offer the possibility to acquire MS/MS peptide identifications in parallel to the high mass precision measurement of peptides on the MS1 level. This raises the computational challenge for the processing and integration of these two sources of information and has led to the development of novel promising quantification strategies.

References

  1. ^ Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (October 2007). "Quantitative mass spectrometry in proteomics: a critical review". Analytical and bioanalytical chemistry 389 (4): 1017–31. doi:10.1007/s00216-007-1486-6. PMID 17668192. 
  2. ^ Asara JM, Christofk HR, Freimark LM, Cantley LC (March 2008). "A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen". Proteomics 8 (5): 994–9. doi:10.1002/pmic.200700426. PMID 18324724. 
  3. ^ Bridges SM, Magee GB, Wang N, Williams WP, Burgess SC, Nanduri B (2007). "ProtQuant: a tool for the label-free quantification of MudPIT proteomics data". BMC bioinformatics 8 Suppl 7: S24. doi:10.1186/1471-2105-8-S7-S24. PMC 2099493. PMID 18047724. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2099493. 
  4. ^ Lukas N. Mueller et al. (2008). "An Assessment of Software Solutions for the Analysis of Mass Spectrometry Based Quantitative Proteomics Data". Journal of Proteome Research 7 (1): 51–61. doi:10.1021/pr700758r. PMID 18173218. 
  5. ^ Scholl, PF, An intact protein LC/MS strategy for serum biomarker development: Biomarkers of hepatic responsiveness to chemopreventive treatment with the triterpenoid CDDO-Im, Abstract, TOA 8:35 a.m. ASMS Conference, 2007.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Label free quantitation — Label free quantitation, also referred to as no label quantitation, is based on precursor signal intensity, which is, in most cases applied to data acquired on high mass precision spectrometers equipped with the new generation of time of flight… …   Wikipedia

  • Quantitative proteomics — The aim of quantitative proteomics is to obtain quantitative information about all proteins in a sample. [cite journal |author=Ong SE, Mann M | date=2005 | title=Mass spectrometry based proteomics turns quantitative | journal=Nature Chemical… …   Wikipedia

  • MicroVacuum — Company Information MicroVacuum Ltd. is a Hungarian high tech company. MicroVacuum is a global supplier of label free biosensor systems for the life science research market to provide rapid, real time, label free detection and characterization of …   Wikipedia

  • PEAKS (software) — PEAKS Original author(s) Bin Ma Developer(s) Bioinformatics Solutions Inc Stable release PEAKS 5.3 / June 10, 2011 Operating system Windows, Linux …   Wikipedia

  • Plate reader — Microplate Readers (also known as Plate readers) are laboratory instruments designed to detect biological, chemical or physical events of samples in microtiter plates. They are widely used in research, drug discovery, bioassay validation, quality …   Wikipedia

  • Method of analytic tableaux — A graphical representation of a partially built propositional tableau In proof theory, the semantic tableau (or truth tree) is a decision procedure for sentential and related logics, and a proof procedure for formulas of first order logic. The… …   Wikipedia

  • Medicine in medieval Islam — In the history of medicine, Islamic medicine or Arabic medicine refers to medicine developed in the medieval Islamic civilization and written in Arabic, the lingua franca of the Islamic civilization. Despite these names, a significant number of… …   Wikipedia

  • Ockham’s world and future — Arthur Gibson PHILOSOPHICAL BIOGRAPHY Ockham was born in about 1285, certainly before 1290, probably in the village of Ockham, Surrey, near London. If his epitaph is accurate, he died on 10 April 1347. Yet Conrad of Megenberg, when writing to… …   History of philosophy

  • Inductively coupled plasma mass spectrometry — ICP MS Instrument Acronym ICP MS Classification Mass spectrometry Analytes atomic and polyatomic species in plasma, with exceptions; usually inte …   Wikipedia

  • Defining equation (physical chemistry) — For the detailed nature of defining equations see Physical quantity Main article: Physical chemistry In physical chemistry, there are numerous quantities associated with chemical compounds and reactions; notably in terms of amounts of substance,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”