- Helmholtz theorem (classical mechanics)
:"For other uses, see
Helmholtz theorem ".The Helmholtz theorem of classical mechanics reads as follows:
Let
:
be the
Hamiltonian of a one-dimensional system, where:
is the
kinetic energy and:
is a "U-shaped"
potential energy profile which depends on a parameter .Let denote the time average. Let:
:
:
:
Then
:
Remarks
The thesis of this theorem of
classical mechanics reads exactly as theheat theorem ofthermodynamics . This fact shows that thermodynamic-like relations exist between certain mechanical quantities. This in turn allows to define the "thermodynamic state" of a one-dimensional mechanical system. In particular thetemperature is given by time average of the kinetic energy , and theentropy by the logarithm of the action (i.e.). The importance of this theorem has been recognized byLudwig Boltzmann who saw how to apply it to macroscopic systems (i.e. multidimensional systems), in order to provide a mechanical foundation ofequilibrium thermodynamics . This research activity was strictly related to his formulation of theergodic hypothesis .A multidimensional version of the Helmholtz theorem, based on theergodic theorem ofGeorge David Birkhoff is known asgeneralized Helmholtz theorem .References
*Helmholtz, H., von (1884a). Principien der Statik monocyklischer Systeme. "Borchardt-Crelle’s Journal für die reine und angewandte Mathematik", 97, 111–140 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 142–162, 179–202). Leipzig: Johann Ambrosious Barth).
*Helmholtz, H., von (1884b). Studien zur Statik monocyklischer Systeme. "Sitzungsberichte der Kö niglich Preussischen Akademie der Wissenschaften zu Berlin", I, 159–177 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 163–178). Leipzig: Johann Ambrosious Barth).
*Boltzmann, L. (1884). Über die Eigenschaften monocyklischer und anderer damit verwandter Systeme."Crelles Journal", 98: 68–94 (also in Boltzmann, L. (1909). Wissenschaftliche Abhandlungen (Vol. 3,pp. 122–152), F. Hasenöhrl (Ed.). Leipzig. Reissued New York: Chelsea, 1969).
*Gallavotti, G. (1999). "Statistical mechanics: A short treatise". Berlin: Springer.
*Campisi, M. (2005) "On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem" Studies in History and Philosophy of Modern Physics 36: 275–290
Wikimedia Foundation. 2010.