Monte Carlo algorithm

Monte Carlo algorithm

In computing, a Monte Carlo algorithm is a randomized algorithm whose running time is deterministic, but whose output may be incorrect with a certain (typically small) probability.

The related class of Las Vegas algorithms is also randomized, but in a different way: they take an amount of time that varies randomly, but always produce the correct answer. A Monte Carlo algorithm can be converted into a Las Vegas algorithm whenever there exists a procedure to verify that the output produced by the algorithm is indeed correct. If so, then the resulting Las Vegas algorithm is merely to repeatedly run the Monte Carlo algorithm until one of the runs produces an output that can be verified to be correct.

The name refers to the grand casino in the Principality of Monaco at Monte Carlo, which is well-known around the world as an icon of gambling.

Contents

One-sided vs two-sided error

Whereas the answer returned by a deterministic algorithm is always expected to be correct, this is not the case for Monte Carlo algorithms. For decision problems, these algorithms are generally classified as either false-biased or true-biased. A false-biased Monte Carlo algorithm is always correct when it returns false; a true-biased behaves likewise, mutatis mutandis. While this describes algorithms with one-sided errors, others might have no bias; these are said to have two-sided errors. The answer they provide (either true or false) will be incorrect, or correct, with some bounded probability.

For instance, the Solovay–Strassen primality test is used to determine whether a given number is a prime number. It always answers true for prime number inputs; for composite inputs, it answers false with probability at least 1/2 and true with probability at most 1/2. Thus, false answers from the algorithm are certain to be correct, whereas the true answers remain uncertain; this is said to be a (1/2)-correct false-biased algorithm.

Amplification

For a Monte Carlo algorithm with one-sided errors, the failure probability can be reduced (and the success probability amplified) by running the algorithm k times. Consider again the Solovay–Strassen algorithm which is (1/2)-correct false-biased. One may run this algorithm multiple times returning a false answer if it reaches a false response within k iteration, and otherwise returning true. Thus, if number is prime then the answer is always correct, and if the number is composite then the answer is correct with probability at least 1−(1−1/2)k = 1−2−k.

For Monte Carlo decision algorithms with two-sided error, the failure probability may again be reduced by running the algorithm k times and returning the majority function of the answers.

Complexity classes

The complexity class BPP describes decision problems that can be solved by polynomial-time Monte Carlo algorithms with a bounded probability of two-sided errors, and the complexity class RP describes problems that can be solved by a Monte Carlo algorithm with a bounded probability of one-sided error: if the correct answer is no, the algorithm always says so, but it may answer no incorrectly for some instances where the correct answer is yes. In contrast, the complexity class ZPP describes problems solvable by polynomial expected time Las Vegas algorithms. ZPP ⊂ RP ⊂ BPP, but it is not known whether any of these complexity classes is distinct from each other; that is, Monte Carlo algorithms may have more computational power than Las Vegas algorithms, but this has not been proven. Another complexity class, PP, describes decision problems with a polynomial-time Monte Carlo algorithm that is more accurate than flipping a coin but where the error probability cannot be bounded away from 1/2.

Applications in computational number theory

Well-known Monte Carlo algorithms include the Solovay–Strassen primality test, the Miller–Rabin primality test, and certain fast variants of the Schreier–Sims algorithm in computational group theory.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Monte Carlo (disambiguation) — Monte Carlo is an administrative area of Monaco. Monte Carlo or Montecarlo may also refer to: Contents 1 Geography 2 Special events 3 …   Wikipedia

  • Monte Carlo method — Not to be confused with Monte Carlo algorithm. Computational physics …   Wikipedia

  • Monte Carlo integration — An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square s area can be easily calculated, the area of the circle can be estimated by the ratio (0.8) of the… …   Wikipedia

  • Monte Carlo method in statistical physics — Monte Carlo in statistical physics refers to the application of the Monte Carlo method to problems in statistical physics, or statistical mechanics. Contents 1 Overview 2 Importance sampling 2.1 Canonical …   Wikipedia

  • Monte Carlo methods in finance — Monte Carlo methods are used in finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining their average… …   Wikipedia

  • Monte Carlo Machine Learning Library (MCMLL) — The Monte Carlo Machine Learning Library (MCMLL) is an open source C++ template library which already relies on some C++0x specs. MCMLL is licensed under the GNU GPL. It is developed under the 64 bit Linux OS. MCMLL should be usable on other… …   Wikipedia

  • Monte Carlo methods for electron transport — The Monte Carlo method for electron transport is a semiclassical Monte Carlo(MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to… …   Wikipedia

  • Monte Carlo option model — In mathematical finance, a Monte Carlo option model uses Monte Carlo methods to calculate the value of an option with multiple sources of uncertainty or with complicated features. The term Monte Carlo method was coined by Stanislaw Ulam in the… …   Wikipedia

  • Monte carlo cinétique — Méthode de Monte Carlo cinétique La méthode de Monte Carlo cinétique, kinetic Monte Carlo (KMC) en anglais, est une méthode de Monte Carlo de simulation informatique permettant de simuler des processus se produisant à des taux connus. En cela… …   Wikipédia en Français

  • Monte Carlo POMDP — In the class of Markov decision process algorithms, the Monte Carlo POMDP (MC POMDP) is the particle filter version for the partially observable Markov decision process (POMDP) algorithm. In MC POMDP, particles filters are used to update and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”