Minkowski–Steiner formula

Minkowski–Steiner formula

In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.

The Minkowski–Steiner formula is used, together with the Brunn-Minkowski theorem, to prove the isoperimetric inequality. It is named after Hermann Minkowski and Jakob Steiner.

Contents

Statement of the Minkowski-Steiner formula

Let n \geq 2, and let A \subsetneq \mathbb{R}^{n} be a compact set. Let μ(A) denote the Lebesgue measure (volume) of A. Define the quantity \lambda (\partial A) by the Minkowski–Steiner formula

\lambda (\partial A) := \liminf_{\delta \to 0} \frac{\mu \left( A + \overline{B_{\delta}} \right) - \mu (A)}{\delta},

where

\overline{B_{\delta}} := \left\{ x = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \left| | x | := \sqrt{x_{1}^{2} + \dots + x_{n}^{2}} \leq \delta \right. \right\}

denotes the closed ball of radius δ > 0, and

A + \overline{B_{\delta}} := \left\{ a + b \in \mathbb{R}^{n} \left| a \in A, b \in \overline{B_{\delta}} \right. \right\}

is the Minkowski sum of A and \overline{B_{\delta}}, so that

A + \overline{B_{\delta}} = \left\{ x \in \mathbb{R}^{n} \mathrel|\ \mathopen| x - a \mathclose| \leq \delta \mbox{ for some } a \in A \right\}.

Remarks

Surface measure

For "sufficiently regular" sets A, the quantity \lambda (\partial A) does indeed correspond with the (n − 1)-dimensional measure of the boundary \partial A of A. See Federer (1969) for a full treatment of this problem.

Convex sets

When the set A is a convex set, the lim-inf above is a true limit, and one can show that

\mu \left( A + \overline{B_{\delta}} \right) = \mu (A) + \lambda (\partial A) \delta + \sum_{i = 2}^{n - 1} \lambda_{i} (A) \delta^{i} + \omega_{n} \delta^{n},

where the λi are some continuous functions of A (see quermassintegrals) and ωn denotes the measure (volume) of the unit ball in \mathbb{R}^{n}:

\omega_{n} = \frac{2 \pi^{n / 2}}{n \Gamma (n / 2)},

where Γ denotes the Gamma function.

Example: volume and surface area of a ball

Taking A = \overline{B_{R}} gives the following well-known formula for the surface area of the sphere of radius R, S_{R} := \partial B_{R}:

\lambda (S_{R}) = \lim_{\delta \to 0} \frac{\mu \left( \overline{B_{R}} + \overline{B_{\delta}} \right) - \mu \left( \overline{B_{R}} \right)}{\delta}
= \lim_{\delta \to 0} \frac{[ (R + \delta)^{n} - R^{n} ] \omega_{n}}{\delta}
= nRn − 1ωn,

where ωn is as above.

References

  • Dacorogna, Bernard (2004). Introduction to the Calculus of Variations. London: Imperial College Press. ISBN 1-86094-508-2. 
  • Federer, Herbert (1969). Geometric Measure Theory. New-York: Springer-Verlag. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Minkowski-Steiner formula — In mathematics, the Minkowski Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the derivative of enclosed volume in an appropriate sense.The… …   Wikipedia

  • Formule De Steiner-Minkowski — Pour les articles homonymes, voir Steiner et Minkowski. En géométrie, les formules de Steiner Minkowski sont des relations traitant d un compact C d un espace euclidien E. On ajoute en général une condition supplémentaire sur le compact,… …   Wikipédia en Français

  • Formule de Steiner-Minkowski — Pour les articles homonymes, voir Steiner et Minkowski. En géométrie, les formules de Steiner Minkowski sont des relations traitant d un compact C d un espace euclidien E. On ajoute en général une condition supplémentaire sur le compact,… …   Wikipédia en Français

  • Formule de steiner-minkowski — Pour les articles homonymes, voir Steiner et Minkowski. En géométrie, les formules de Steiner Minkowski sont des relations traitant d un compact C d un espace euclidien E. On ajoute en général une condition supplémentaire sur le compact,… …   Wikipédia en Français

  • Hermann Minkowski — Infobox Scientist name = Hermann Minkowski |300px caption = birth date = birth date|1864|6|22|mf=y birth place = Aleksotas, Kaunas, Lithuania, Russian Empire death date = death date and age|1909|1|12|1864|6|22|mf=y death place = Göttingen,… …   Wikipedia

  • Brunn-Minkowski theorem — In mathematics, the Brunn Minkowski theorem (or Brunn Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn Minkowski theorem (H …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Mixed volume — In mathematics, more specifically, in convex geometry, the mixed volume is a way to associate a non negative number to an n tuple of convex bodies in the n dimensional space. This number depends on the size of the bodies and their relative… …   Wikipedia

  • Isoperimetric inequality — The isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. Isoperimetric literally means… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”