- Metal bis(trimethylsilyl)amides
-
Metal bis(trimethylsilyl)amides are coordination complexes of a metal cation with bis(trimethylsilyl)amide ligands. These ligands are often denoted hmds (from hexamethyldisilazide). These compounds are part of a broader category of metal amides.
Metal bis(trimethylsilyl)amide complexes are lipophilic due to the ligand, thus soluble in nonpolar organic solvents. Because of the bulk of the ligands, their complexes are usually discrete and often monomeric. As such they are more reactive than polymeric metal halides. Having a built-in base, these compounds conveniently react with protic ligand precursors to give other metal complexes.[1] The class of ligands and pioneering studies on their coordination compounds were described by Bürger and Wannagat.[2][3]
Contents
General methods of preparation
Apart from group 1 and 2 complexes, a general method for preparing many metal bis(trimethylsilyl)amides is to react the anhydrous metal chloride[4] with one of the alkali metal bis(trimethylsilyl)amides:
- MClx + x Na(hmds) → M(hmds)x + x NaCl
The alkali metal chloride precipitates, which may be removed by filtration. The resultant metal bis(trimethylsilyl)amide is often purified by distillation or sublimation.
Group 1 complexes
Main articles: lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide, and potassium bis(trimethylsilyl)amideLithium, sodium, and potassium bis(trimethylsilyl)amides are commercially available. When free of solvent, the lithium[5] and sodium[6] complexes are trimeric, and the potassium complex is dimeric in solid state.[7] The lithium reagent may be prepared from n-butyllithium and bis(trimethylsilyl)amine:[8]
- n-C4H9Li + HN(SiMe3)2 → Li(hmds) + C4H10
The direct reaction of these molten reactive metals with bis(trimethylsilyl)amine at high temperature has been described as well:[9]
- M + HN(SiMe3)2 → MN(SiMe3)2 + 1/2 H2
These reagents are soluble in organic solvent, where they exist as aggregates. They are often used as strong bases. Like lithium diisopropylamide, these reagents are sterically hindered bases. In inorganic chemistry, these reagents are precursors for other bis(trimethylsilyl)amide complexes via metathesis reactions (see below).
Group 2 complexes
The amine N-H is not acidic enough to react with the group 2 metals, but they may be prepared by reaction of tin(II) bis(trimethylsilyl)amide with the appropriate metal:
- M + 2 HN(SiMe3)2 –/→ M(hmds)2 + H2 (M = Mg, Ca, Sr, Ba)
- M + Sn(hmds)2 → M(hmds)2 + Sn
Long reaction times are required for this synthesis. In the presence of dimethoxyethane, the dimethoxyethane adducts are formed. To obtain the free complexes, non-coordinating solvents like benzene or toluene are used. After filtration, the products crystallize on cooling.[10]
The calcium complex may also be prepared by reaction of calcium iodide with potassium bis(trimethylsilyl)amide, but this method can result in potassium contamination. An improved synthesis involving the reaction of benzylpotassium with calcium iodide, followed by reaction with bis(trimethylsilyl)amine results in potassium-free material:[11]
- 2 BzK + CaI2 + THF → Bz2Ca(thf) + KI
- Bz2Ca(thf) + 2 HN(SiMe3)2 → Ca(hmds)2 + 2 C6H5CH3 + THF
p-Block complexes
Tin(II) bis(trimethylsilyl)amide, an orange-red solid. This compound is commercially available. It is also prepared by reaction of lithium bis(trimethylsilyl)amide with anhydrous tin(II) choride, vacuum distillation, and crystallization.[12]
The group 13 bis(trimethylsilyl)amides are prepared in the same fashion. These compounds are isolated by filtration, and purified by sublimation. The aluminium complex may also be prepared by treating strongly basic lithium aluminium hydride with the parent amine:[13]
- LiAlH4 + 4 HN(SiMe3)2 → Li(hmds) + Al(hmds)3 + 4 H2
d-Block complexes
The group 12 bis(trimethylsilyl)amides may be prepared by treating zinc chloride, cadmium iodide, and mercury bromide with sodium bis(trimethylsilyl)amide to give the corresponding products as liquids after filtration and evaporation, which are purified by distillation.[14] The zinc complex is a colorless liquid; it is commercially available.
The manganese(II), nickel(II), copper(II) complexes may be prepared via reaction of the corresponding iodide salt with sodium bis(trimethylsilyl)amide. The cobalt(II) complex is similarly prepared from the chloride. The liquid, blue ferrous derivative is similarly prepared from ferrous chloride. It exists as an equilibrium mixture of monomer and dimer, forming a monomeric three-coordinate adduct with THF.[15] The dark green iron(III), apple-green chromium(III), and brown vanadium(III) complexes is prepared by treating two equivalents of the metal trichlorides with three equivalents of sodium bis(trimethylsilyl)amide:[3][16]
- FeCl3 + 3 Na(hmds) → Fe(hmds)3 + Na3FeCl6
The same metathesis method is used for the blue titanium(III) derivative, using the soluble precursor TiCl3(trimethylamine)3.
Compound Appearance m.p. (°C) b.p. (°C) Comment Group 3 complexes Sc(hmds)3[17] Colorless solid 172-174 Y(hmds)3 White solid 180-184 105°C/10 mmHg (subl.) Commercially available Group 4 complexes Ti(hmds)3[17] Bright blue solid Paramagnetic. Prepared from TiCl3(N(CH3)3)2 Group 5 complexes V(hmds)3[17] Brown solid Prepared from VCl3(N(CH3)3)2 Group 6 complexes Cr(hmds)3[3][17] Apple-green solid 120 110 / 0.5 mmHg (subl.) Paramagnetic Group 7 complexes Mn(hmds)2[3] Beige solid 100 / 0.2 mmHg Group 8 complexes Fe(hmds)2[18] Light green solid 90-100 / 0.01 mmHg Fe(hmds)3[17] Dark green solid 120 / 0.5 mmHg (subl.) Paramagnetic Group 9 complexes Co(hmds)2[2] Green solid 73 101 / 0.6 mmHg Group 10 complexes Ni(hmds)2[3] Red liquid 80 / 0.2 mmHg Group 11 complexes Cu(hmds)[3] Colorless solid 180 / 0.2 mmHg (subl.) Group 12 complexes Zn(hmds)2[14] Colorless liquid 12.5 82 / 0.5 mmHg Commercially available Cd(hmds)2[14] Colorless liquid 8 93 / 0.5 mmHg Hg(hmds)2[14] Colorless liquid 11 78 / 0.15 mmHg Lanthanides
Lanthanide triflates can be convenient anhydrous precursors to many bis(trimethylsilyl)amides:[19]
- Ln(OTf)3 + 3 M(hmds) → Ln(hmds)3 + 3 MOTf (M = Li, Na, K; Ln = La, Nd, Sm, Er)
Compound Appearance m.p. (°C) b.p. (°C) Comment La(hmds)3 149-153 Commercially available Ce(hmds)3 132-140 Commercially available Nd(hmds)3 156-159 Commercially available Sm(hmds)3 93-106 Commercially available Eu(hmds)3 147-154 Commercially available Gd(hmds)3 67-90 Commercially available Ho(hmds)3 165-169 Commercially available Tm(hmds)3 159-164 Commercially available Yb(hmds)3 162-164 Commercially available Safety
Metal bis(trimethylsilyl)amides are strong bases. They are corrosive, and are incompatible with many chlorinated solvents. These compounds react vigorously with water, and should be manipulated with air-free technique.
References
- ^ Michael Lappert, Andrey Protchenko, Philip Power, Alexandra Seeber (2009). Metal Amide Chemistry. Weinheim: Wiley-VCH. doi:10.1002/9780470740385. ISBN 0470721847.
- ^ a b H. Bürger and U. Wannagat (1963). "Silylamido-Derivate von Eisen und Kobalt". Monatshefte für Chemie 94: 1007–1012. doi:10.1007/BF00905688.
- ^ a b c d e f H. Bürger and U. Wannagat (1963). "Silylamido-Derivate von Chrom, Mangan, Nickel und Kupfer". Monatshefte für Chemie 95: 1099–1102. doi:10.1007/BF00904702.
- ^ Many metal chlorides may be dried by refluxing in thionyl chloride. See Alfred R. Pray, Richard F. Heitmiller, Stanley Strycker (1990). Anhydrous Metal Chlorides. Inorg. Synth.. 28. pp. 321–323. doi:10.1002/9780470132593.ch80. ISBN 9780470132593.
- ^ Mootz, D.; Zinnius, A.; Böttcher, B. (1969). "Assoziation im festen Zustand von Bis(trimethylsilyl)amidolithium und Methyltrimethylsilanolatoberyllium". Angew. Chem. 81 (10): 398–399. doi:10.1002/ange.19690811015.
- ^ Driess, Matthias; Pritzkow, Hans; Skipinski, Markus; Winkler, Uwe (1997). "Synthesis and Solid State Structures of Sterically Congested Sodium and Cesium Silyl(fluorosilyl)phosphanide Aggregates and Structural Characterization of the Trimeric Sodium Bis(trimethylsilyl)amide". Organometallics 16 (23): 5108–5112. doi:10.1021/om970444c.
- ^ Tesh, Kris F.; Hanusa, Timothy P.; Huffman, John C. (1990). "Ion pairing in [bis(trimethylsilyl)amido]potassium: The x-ray crystal structure of unsolvated [KN(SiMe3)2]2". Inorg. Chem. 29 (8): 1584–1586. doi:10.1021/ic00333a029.
- ^ Amonoo-Neizer, E. H.; Shaw, R. A.; Skovlin, D. O.; Smith, B. C.; Rosenthal, Joel W.; Jolly, William L. (1966). "Lithium Bis(Trimethylsilyl)Amide and Tris(Trimethylsilyl)Amine". Inorg. Synth. 8: 19–22. doi:10.1002/9780470132395.ch6. ISBN 9780470132395.
- ^ US 5420322
- ^ Westerhausen, Matthias. (1991). "Synthesis and spectroscopic properties of bis(trimethylsilyl)amides of the alkaline-earth metals magnesium, calcium, strontium, and barium". Inorg. Chem. 30: 96–101. doi:10.1021/ic00001a018.
- ^ Johns, Adam M.; Chmely, Stephen C.; Hanusa, Timothy P. (2009). "Solution Interaction of Potassium and Calcium Bis(trimethylsilyl)amides; Preparation of Ca[N(SiMe3)2]2from Dibenzylcalcium". Inorg. Chem. 48 (4): 1380–1384. doi:10.1021/ic8012766.
- ^ Schaeffer, Charles D.; Myers, Lori K.; Coley, Suzanne M.; Otter, Julie C.; Yoder, Claude H. (1990). "Preparation, analysis, and reactivity of bis[N,N-bis(trimethylsilyl)amino]tin(II): An advanced undergraduate laboratory project in organometallic synthesis". J. Chem. Ed. 67 (4): 347. doi:10.1021/ed067p347.
- ^ Bürger, H (1971). "Beiträgezur chemie der silicium-stickstoff-verbindungen CVII. Darstellung, schwingungsspektren und normalkoordinatenanalyse von disilylamiden der 3. Gruppe: M[N(SiMe3)2]3 mit M = Al, Ga und In". J. Organomet. Chem. 33: 1–12. doi:10.1016/s0022-328x(00)80797-4.
- ^ a b c d Bürger, H (1965). "Darstellung und schwinkungsspektren von silylamiden der elemente zink, cadmium und quecksilber". J. Organomet. Chem. 3 (2): 113–120. doi:10.1016/s0022-328x(00)84740-3.
- ^ Y. Ohki, S. Ohta, and K. Tatsumi "Monomeric Iron(II) Complexes Having Two Sterically Hindered Arylthiolates" Inorg. Syn. 2010, vol. 35, 137. doi:10.1002/9780470651568.ch7
- ^ D. C. Bradley and Copperthwaite "Transition Metal Complexes of Bis(trimethylsilyl)amine" Inorg. Synth. 1978, vol. 18, 112–120 (1978)). doi:10.1002/9780470132494.ch18
- ^ a b c d e D. C. Bradley and R.G. Copperthwaite (1978). Transition Metal Complexes of Bis(trimethylsilyl)amine. Inorg. Synth.. 18. pp. 112–120. doi:10.1002/9780470132494.ch18. ISBN 9780470132494.
- ^ Y. Ohki, S. Ohta, and K. Tatsumi (2010). Monomeric Iron(II) Complexes Having Two Sterically Hindered Arylthiolates. Inorg. Synth.. 35. pp. 137. doi:10.1002/9780470651568.ch7. ISBN 9780470651568.
- ^ Schuetz, Steven A.; Day, Victor W.; Sommer, Roger D.; Rheingold, Arnold L.; Belot, John A. (2001). "Anhydrous Lanthanide Schiff Base Complexes and Their Preparation Using Lanthanide Triflate Derived Amides". Inorg. Chem. 40 (20): 5292–5295. doi:10.1021/ic010060l.
Categories:- Bis(trimethylsilyl)amides
- Coordination chemistry
Wikimedia Foundation. 2010.