Langlands–Deligne local constant

Langlands–Deligne local constant

In mathematics, the Langlands–Deligne local constant (or local Artin root number un to an elementary function of s) is an elementary function associated with a representation of the Weil group of a local field. The functional equation

L(ρ,s) = ε(ρ,s)L(ρ,1−s)

of an Artin L-function has an elementary function ε(ρ,s) appearing in it, equal to a constant called the Artin root number times an elementary real function of s, and Langlands discovered that ε(ρ,s) can be written in a canonical way as a product

ε(ρ,s) = Π ε(ρv, s, ψv)

of local constants ε(ρv, s, ψv) associated to primes v.

Tate proved the existence of the local constants in the case that ρ is 1-dimensional in Tate's thesis. Dwork (1956) proved the existence of the local constant ε(ρv, s, ψv) up to sign. The original proof of the existence of the local constants by Langlands (1970) used local methods and was rather long and complicated, and never published. Deligne (1973) later discovered a simpler proof using global methods.

Contents

Properties

The local constants ε(ρ, s, ψE) depend on a representation ρ of the Weil group and a choice of character ψE of the additive group of E. They satisfy the following conditions:

  • If ρ is 1-dimensional then ε(ρ, s, ψE) is the constant associated to it by Tate's thesis as the constant in the functional equation of the local L-function.
  • ε(ρ1⊕ρ2, s, ψE) = ε(ρ1, s, ψE)ε(ρ2, s, ψE). As a result ε(ρ, s, ψE) can also be defined for virtual representations ρ.
  • If ρ is a virtual representation of dimension 0 and E contains K then ε(ρ, s, ψE) = ε(IndE/Kρ, s, ψK)

Brauer's theorem on induced characters implies that these three properties characterize the local constants.

Deligne (1976) showed that the local constants are trivial for real (orthogonal) representations of the Weil group.

Notational conventions

There are several different conventions for denoting the local constants.

  • The parameter s is redundant and can be combined with the representation ρ, because ε(ρ, s, ψE) = ε(ρ⊗||s, 0, ψE) for a suitable character ||.
  • Deligne includes an extra parameter dx consisting of a choice of Haar measure on the local field. Other conventions omit this parameter by fixing a choice of Haar measure: either the Haar measure that is self dual with respect to ψ (used by Langlands), or the Haar measure that gives the integers of E measure 1. These different conventions differ by elementary terms that are positive real numbers.

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Pierre Deligne — Pierre Deligne, March 2005 Born 3 October 1944 (1944 10 03 …   Wikipedia

  • List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”