Brauer's theorem on induced characters

Brauer's theorem on induced characters

Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, which is, in turn, part of the representation theory of a finite group. Let "G" be a finite group and let Char("G") denote the subring of the ring of complex-valued class functions of "G" consisting of integer combinations of irreducible characters. Char("G") is known as the character ring of "G", and its elements are known as virtual characters (alternatively, as generalized characters, or sometimes difference characters). It is a ring by virtue of the fact that the product of characters of "G" is again a character of "G." Its multiplication is given by the elementwise product of class functions.

Brauer's induction theorem shows that the character ring can be generated (as an abelian group) by certain characters which are fairly easily understood. More precisely, the theorem states that every virtual character of "G" is expressible as an integer combination of induced characters of the form ,lambda^{G}, where "H" ranges over subgroups of "G" and λ ranges over linear characters (having degree 1) of "H".

In fact, Brauer showed that the subgroups "H" could be chosen from a veryrestricted collection, now called Brauer elementarysubgroups. These are direct products of cyclic groups and groups whose order is a power of a prime.

Using Frobenius reciprocity, Brauer's induction theorem leads easily to his fundamental characterization of characters, which asserts that a complex-valued class function of "G" is a virtual character if and only if its restriction to each Brauer elementary subgroup of "G" is a virtual character. This result, together with the fact that a virtual character θ is an irreducible characterif and only if θ(1) "> 0" and langle heta, heta angle =1 (where langle, angle is the usual inner product on the ring of complex-valued class functions) givesa means of constructing irreducible characters without explicitly constructing the associated representations.

An initial motivation for Brauer's induction theorem was application to Artin L-functions. It shows that those are built up from Dirichlet L-functions, or more general Hecke L-functions. Highly significant for that application is whether each character of "G" is a "non-negative" integer combination of characters induced from linear characters of subgroups. In general, this is not the case. In fact, by a theorem of Taketa, if all characters of "G" are so expressible, then "G" must be a solvable group (although solvability alone does not guarantee such expressions- for example, the solvable group "SL(2,3)" has an irreducible complex character of degree 2 which is not expressible as a non-negative integer combination of characters induced from linear characters of subgroups). An ingredient of the proof of Brauer's induction theorem is that when "G" is a finite nilpotent group, every complex irreducible character of "G" is induced from a linear character of some subgroup.

A precursor to Brauer's induction theorem was Artin's induction theorem, which states that |"G"| times the trivial character of "G" is an integer combination of characters which are each induced from trivial characters of cyclic subgroups of "G." Brauer's theorem removes the factor |"G"|, but at the expense of expanding the collection of subgroups used. Some years after the proof of Brauer's theorem appeared, J.A. Green showed (in 1955) that no such induction theorem (with integer combinations of characters induced from linear characters) could be proved with a collection of subgroups smaller than the Brauer elementary subgroups.

The proof of Brauer's induction theorem exploits the ring structure of Char("G") (most proofs also make use of a slightly larger ring, Char*(G), which consists of mathbb{Z} [omega] -combinations of irreducible characters, where ω is a primitive complex |"G"|-th root of unity). The set of integer combinations of characters induced from linear characters of Brauer elementary subgroups is an ideal "I"("G") of Char("G"), so the proof reduces to showing that the trivial character is in "I"("G"). Several proofs of the theorem, beginning with a proof due to Brauer and John Tate, show that the trivial character is in the analogously defined ideal "I"*("G") of Char*("G") by concentrating attention on one prime "p" at a time, and constructing integer-valued elements of "I"*("G") which differ (elementwise) from the trivial character by (integer multiples of) a sufficiently high power of "p." Once this is achieved for every prime divisor of |"G"|, some manipulations with congruencesand algebraic integers, again exploiting the fact that "I"*("G") is an ideal of Ch*("G"), place the trivial character in "I"("G"). An auxiliary result here is that a mathbb{Z} [omega] -valued class function lies in the ideal "I"*("G") if its values are all divisible (in mathbb{Z} [omega] ) by |"G"|.

Brauer's induction theorem was proved in 1946, and there are now many alternative proofs. In 1986, Victor Snaith gave a proof by a radically different approach, topological in nature (an application of the Lefschetz fixed-point theorem). There has been related recent work on the question of finding natural and explicit forms of Brauer's theorem, notably by Robert Boltje.

References

* Corrected reprint of the 1976 original, published by Academic Press.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Brauer's theorem — There also is Brauer s theorem on induced characters. In mathematics, Brauer s theorem, named for Richard Brauer, is a result on the representability of 0 by forms over certain fields in sufficiently many variables. [R. Brauer, A note on systems… …   Wikipedia

  • Richard Brauer — Infobox Scientist name = Richard Brauer box width = image width = 150px caption = Richard Brauer birth date = February 10, 1901 birth place = death date = April 17, 1977 death place = residence = citizenship = nationality = United States, Germany …   Wikipedia

  • Richard Brauer — Pour les articles homonymes, voir Brauer. Richard et Ilse Brauer en 1970 Richard Dagobert Brauer (10 février 1901 à Berlin – 17 avril 1977 à Belmont (Massachusetts)  …   Wikipédia en Français

  • Feit–Thompson theorem — In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963) Contents 1 History 2 Significance of the proof …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Algèbre d'un groupe fini — Pour les articles homonymes, voir Algèbre (homonymie). En mathématiques, l algèbre d un groupe fini est un cas particulier d algèbre d un monoïde qui s inscrit dans le cadre de la théorie des représentations d un groupe fini. Une algèbre d un… …   Wikipédia en Français

  • Conjecture d'Artin sur les fonctions L — Pour les articles homonymes, voir Conjecture d Artin sur les racines primitives. En mathématiques, et en particulier en théorie des nombres, la conjecture d’Artin sur les fonctions L concerne les régions du plan complexe dans lesquelles une… …   Wikipédia en Français

  • Artin L-function — In mathematics, an Artin L function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G . These functions were introduced in the 1923 by Emil Artin, in connection with his research into class field theory.… …   Wikipedia

  • Langlands–Deligne local constant — In mathematics, the Langlands–Deligne local constant (or local Artin root number un to an elementary function of s) is an elementary function associated with a representation of the Weil group of a local field. The functional equation L(ρ,s) =… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”