Emil Artin

Emil Artin

Infobox Scientist
name=Emil Artin


birth_date = March 3, 1898
birth_place = Vienna
death_date = December 20, 1962
field = Mathematics

Emil Artin (March 3, 1898, in ViennaDecember 20, 1962, in Hamburg) was an Austrian mathematician. His father, also Emil Artin, was an Armenian art-dealer, and his mother was the opera singer Emma Laura-Artin. He grew up in Reichenberg (today Liberec) in Bohemia, where German was the primary language. He left school in 1916, and one year later went to the University of Vienna.

Artin spent his career in Germany (mainly in Hamburg) until the Nazi threat when he emigrated to the USA in 1937. He was at Indiana University from 1938 to 1946, and at Princeton University from 1946 to 1958.

Influence and work

He was one of the leading algebraists of the century, with an influence larger than might be guessed from the one volume of his "Collected Papers" edited by Serge Lang and John Tate. He worked in algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. He developed the theory of braids as a branch of algebraic topology.

He was also an important expositor of Galois theory, and of the group cohomology approach to class ring theory (with John Tate), to mention two theories where his formulations became standard. The influential treatment of abstract algebra by van der Waerden is said to derive in part from Artin's ideas, as well as those of Emmy Noether. He wrote a book on geometric algebra that gave rise to the contemporary use of the term, reviving it from the work of W. K. Clifford.

Conjectures

He left two conjectures, both known as Artin's conjecture. The first concerns Artin L-functions for a linear representation of a Galois group; and the second the frequency with which a given integer "a" is a primitive root modulo primes "p", when "a" is fixed and "p" varies. These are unproven; Hooley proved a result for the second conditional on the first.

upervision of research

Artin advised over thirty doctoral students, including
Bernard Dwork, Serge Lang, Kollagunta Ramanathan, John Tate, Hans Zassenhaus and Max Zorn. He died in 1962, in Hamburg, Germany.

Family

He married in 1932 Natascha Jasny, who was Jewish and born in Russia [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=TPRBAU000047000002000189000001&idtype=cvips&gifs=yes] . Artin himself was not Jewish, but was dismissed from his university position in 1937. They had three children, one of whom is Michael Artin, an American algebraist currently at MIT.

See also

* Artin reciprocity
* Artin-Wedderburn theorem
* Artinian
* Artin L-function
* Artin's conjecture for conjectures by Artin. These include:* Artin's conjecture on primitive roots:* Artin conjecture on L-functions
* Artin-Schreier theory
* Artin group
* Ankeny-Artin-Chowla congruence
* Artin billiards
* Artin-Hasse exponential
* Artin-Rees lemma

Selected bibliography

* [http://links.jstor.org/sici?sici=0003-486X%28194701%292%3A48%3A1%3C101%3ATOB%3E2.0.CO%3B2-A] Emil Artin, "The theory of braids", Annals of Mathematics (2) 48 (1947), 101 – 126
* "(Reprinting of second revised edition of 1944, The University of Notre Dame Press)". [http://projecteuclid.org/euclid.ndml/1175197041]
* A Freshman Honors Course in Calculus and Analytic Geometry ISBN 0923891528

External links

*MacTutor Biography|id=Artin
*MathGenealogy|id=7690
* [http://libweb.princeton.edu/libraries/firestone/rbsc/finding_aids/mathoral/pmcxrota.htm] "Fine Hall in its golden age: Remembrances of Princeton in the early fifties", by Gian-Carlo Rota. Contains a section on Artin at Princeton.

Further reading

* cite encyclopedia
last = Schoeneberg
first = Bruno
title = Artin, Emil
encyclopedia = Dictionary of Scientific Biography
volume = 1
pages = 306-308
publisher = Charles Scribner's Sons
location = New York
date = 1970
isbn = 0684101149


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Emil Artin — (* 3. März 1898 in Wien; † 20. Dezember 1962 in Hamburg) war ein österreichischer Mathematiker und einer der führenden Algebraiker des 20. Jahrhunderts. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Emil Artin — Saltar a navegación, búsqueda Emil Artin Emil Artin (3 de marzo de 1898 20 de diciembre de 1962) fue un matemático austriaco nacido en Viena que inició su carrera en Alemania, en la …   Wikipedia Español

  • Emil Artin — (1898 1962). Matemático austriaco nacido en Viena y fallecido en Hamburgo. Enseñó primero en la Universidad de Gotinga y pasó en 1923 a la de Hamburgo. Emigrado en 1937 a Estados Unidos, ejerció la docencia en varias universidades de ese país.… …   Enciclopedia Universal

  • Emil Artin — Pour les articles homonymes, voir Artin. Emil Artin. Emil Artin (3 mars 1898 à Vienne, 20  …   Wikipédia en Français

  • ARTIN (E.) — On peut considérer Artin comme un des fondateurs de l’algèbre contemporaine; par exemple, de l’aveu de son auteur, le livre Moderne Algebra de Van der Waerden, qui fut l’ouvrage de référence pendant trente ans, est issu de leçons professées par… …   Encyclopédie Universelle

  • Artin — may refer to:*The name of a king in the Median Empire, still in use among modern Kurds, Armenians, and Iranians today. *Emil Artin, was an Austrian mathematician. *Michael Artin, is an American mathematician, son of Emil Artin …   Wikipedia

  • Artin — Saltar a navegación, búsqueda Artin puede referir a: Emil Artin Teorema de Artin Wedderburn Función zeta de Artin Mazur Paul Artin Boghossian Obtenido de Artin Categoría: Wikipedia:Desambiguación …   Wikipedia Español

  • Artin — ist ein armenischer männlicher Vorname,[1] der u. a. in der Türkei und im Iran sowie als Familienname vorkommt. Inhaltsverzeichnis 1 Bekannte Namensträger 1.1 Vorname 1.2 Familienname …   Deutsch Wikipedia

  • Artin reciprocity law — The Artin reciprocity law, established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of the global class field theory.[1] The term reciprocity law refers to a long line of… …   Wikipedia

  • Artin-Schreier-Theorie — Die Artin Schreier Theorie gehört in der Mathematik zur Körpertheorie. Für Körper positiver Charakteristik p beschreibt sie abelsche Galois Erweiterungen vom Exponenten p und ergänzt damit die Kummer Theorie. Sie ist benannt nach Emil Artin und… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/153494 Do a right-click on the link above
and select “Copy Link”