- Special classes of semigroups
-
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large variety of special classes of semigroups have been defined though not all of them have been studied equally intensively.
In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigroups and occasionally on the cardinality and similar properties of subsets of the underlying set. The underlying sets are not assumed to carry any other mathematical structures like order or topology.
As in any algebraic theory, one of the main problems of the theory of semigroups is the classification of all semigroups and a complete description of their structure. In the case of semigroups, since the binary operation is required to satisfy only the associativity property the problem of classification is considered extremely difficult. Descriptions of structures have been obtained for certain special classes of semigroups. For example the structure of the sets of idempotents of regular semigroups is completely known. Structure descriptions are presented in terms of better known types of semigroups. The best known type of semigroup is the group.
A (necessarily incomplete) list of various special classes of semigroups is presented below. To the extent possible the defining properties are formulated in terms of the binary operations in the semigroups. The references point to the locations from where the defining properties are sourced.
Notations
In describing the defining properties of the various special classes of semigroups, the following notational conventions are adopted.
Notations Notation Meaning S Arbitrary semigroup E Set of idempotents in S G Group of units in S X Arbitrary set a, b, c Arbitrary elements of S x, y, z Specific elements of S e, f. g Arbitrary elements of E h Specific element of E l, m, n Arbitrary positive integers j, k Specific positive integers 0 Zero element of S 1 Identity element of S S1 S if 1 ∈ S; S ∪ { 1 } if 1 ∉ S L, R, H, D, J Green's relations La, Ra, Ha, Da, Ja Green classes containing a a ≤L b
a ≤R b
a ≤H bS1a ⊆ S1b
aS1 ⊆ bS1
S1a ⊆ S1b and aS1 ⊆ bS1List of special classes of semigroups
List of special classes of semigroups Terminology Defining property Reference(s) Finite semigroup - S is a finite set.
Empty semigroup - S =
Trivial semigroup - Cardinality of S is 1.
Monoid - 1 ∈ S
Gril p.3 Band
(Idempotent semigroup)- a2 = a
C&P p.4 Idempotent semigroup
(Band)- a2 = a
C&P p.4 Semilattice - a2 = a
- ab = ba
C&P p.24 Commutative semigroup - ab = ba
C&P p.3 Archimedean commutative semigroup - ab = ba
- There exists x and k such that a = xbk.
C&P p.131 Nowhere commutative semigroup - ab = ba ⇒ a = b
C&P p.26 Left weakly commutative - There exist x and k such that (ab)k = bx.
Nagy p.59 Right weakly commutative - There exist x and k such that (ab)k = xb.
Nagy p.59 Weakly commutative - There exist x and j such that (ab)j = bx.
- There exist y and k such that (ab)k = yb.
Nagy p.59 Conditionally commutative semigroup - If ab = ba then axb = bxa for all x.
Nagy p.77 R-commutative semigroup - ab R ba
Nagy p.69–71 RC-commutative semigroup - R-commutative and conditionally commutative
Nagy p.93–107 L-commutative semigroup - ab L ba
Nagy p.69–71 LC-commutative semigroup - L-commutative and conditionally commutative
Nagy p.93–107 H-commutative semigroup - ab H ba
Nagy p.69–71 Quasi-commutative semigroup - ab = (ba)k for some k.
Nagy p.109 Right commutative semigroup - xab = xba
Nagy p.137 Left commutative semigroup - abx = bax
Nagy p.137 Externally commutative semigroup - axb = bxa
Nagy p.175 Medial semigroup - xaby = xbay
Nagy p.119 E-k semigroup (k fixed) - (ab)k = akbk
Nagy p.183 Exponential semigroup - (ab)m = ambm for all m
Nagy p.183 WE-k semigroup (k fixed) - There is a positive integer j depending on the couple (a,b) such that (ab)k+j = akbk (ab)j = (ab)jakbk
Nagy p.199 Weakly exponential semigroup - WE-m for all m
Nagy p.215 Cancellative semigroup - ax = ay ⇒ x = y
- xa = ya ⇒ x = y
C&P p.3 Right cancellative semigroup - xa = ya ⇒ x = y
C&P p.3 Left cancellative semigroup - ax = ay ⇒ x = y
C&P p.3 E-inversive semigroup - There exists x such that ax ∈ E.
C&P p.98 Regular semigroup - There exists x such that axa =a.
C&P p.26 Intra-regular semigroup - There exist x and y such that xa2y = a.
C&P p.121 Left regular semigroup - There exists x such that xa2 = a.
C&P p.121 Right regular semigroup - There exists x such that a2x = a.
C&P p.121 Completely regular semigroup
(Clifford semigroup)- Ha is a group.
Gril p.75 k-regular semigroup (k fixed) - There exists x such that akxak = ak.
Hari π-regular semigroup
(Quasi regular semigroup,
Eventually regular semigroup)- There exists k and x (depending on a) such that akxak = ak.
Edwa Eventually regular semigroup
(π-regular semigroup,
Quasi regular semigroup)- There exists k and x (depending on a) such that akxak = ak.
Edwa Quasi-regular semigroup
(π-regular semigroup,
Eventually regular semigroup)- There exists k and x (depending on a) such that akxak = ak.
Shum Primitive semigroup - If 0 ≠ e and f = ef = fe then e = f.
C&P p.26 Unit regular semigroup - There exists u in G such that aua = a.
Tvm Strongly unit regular semigroup - There exists u in G such that aua = a.
- e D f ⇒ f = v-1ev for some v in G.
Tvm Orthodox semigroup - There exists x such that axa = a.
- E is a subsemigroup of S.
Gril p.57 Inverse semigroup - There exists unique x such that axa = a and xax = x.
C&P p.28 Left inverse semigroup
(R-unipotent)- Ra contains a unique h.
Gril p.382 Right inverse semigroup
(L-unipotent)- La contains a unique h.
Gril p.382 Locally inverse semigroup
(Pseudoinverse semigroup)- There exists x such that axa = a.
- E is a pseudosemilattice.
Gril p.352 M-inversive semigroup - There exist x and y such that baxc = bc and byac = bc.
C&P p.98 Pseudoinverse semigroup
(Locally inverse semigroup)- There exists x such that axa = a.
- E is a pseudosemilattice.
Gril p.352 Abundant semigroups - The classes L*a and R*a, where a L* b if ac = ad ⇔ bc = bd and a R* b if ca = da ⇔ cb = db, contain idempotents.
Chen Rpp-semigroup
(Right principal projective semigroup)- The class L*a, where a L* b if ac = ad ⇔ bc = bd, contains at least one idempotent.
Shum Lpp-semigroup
(Left principal projective semigroup)- The class R*a, where a R* b if ca = da ⇔ cb = db, contains at least one idempotent.
Shum Null semigroup
(Zero semigroup)- 0 ∈ S
- ab = 0
C&P p.4 Zero semigroup
(Null semigroup)- 0 ∈ S
- ab = 0
C&P p.4 Left zero semigroup - ab = a
C&P p.4 Right zero semigroup - ab = b
C&P p.4 Unipotent semigroup - E is singleton.
C&P p.21 Left reductive semigroup - If xa = xb for all x implies a = b.
C&P p.9 Right reductive semigroup - If ax = bx for all x implies a = b.
C&P p.4 Reductive semigroup - If xa = xb for all x implies a = b.
- If ax = bx for all x implies a = b.
C&P p.4 Separative semigroup - ab = a2 = b2 ⇒ a = b
C&P p.130–131 Reversible semigroup - Sa ∩ Sb ≠ Ø
- aS ∩ bS ≠ Ø
C&P p.34 Right reversible semigroup - Sa ∩ Sb ≠ Ø
C&P p.34 Left reversible semigroup - aS ∩ bS ≠ Ø
C&P p.34 Aperiodic semigroup
(Groupfree semigroup,
Combinatorial semigroup)- ab = ba
- ak is in a subgroup of S for some k.
- Every nonempty subset of E has an infimum.
- Every subgroup of S is trivial.
Gril p.119 ω-semigroup - E is countable descending chain under the order a ≤H b
Gril p.233–238 Clifford semigroup
(Completely regular semigroup)- Ha is a group.
Gril p.211–215 Left Clifford semigroup
(LC-semigroup)- aS ⊆ Sa
Shum Right Clifford semigroup
(RC-semigroup)- Sa ⊆ aS
Shum LC-semigroup
(Left Clifford semigroup)- aS ⊆ Sa
Shum RC-semigroup
(Right Clifford semigroup)- Sa ⊆ aS
Shum Orthogroup - Ha is a group.
- E is a subsemigroup of S
Shum Combinatorial semigroup
(Aperiodic semigroup,
Groupfree semigroup)- ab = ba
- ak is in a subgroup of S for some k.
- Every nonempty subset of E has an infimum.
- Every subgroup of S is trivial.
Gril p.119 Complete commutative semigroup - ab = ba
- ak is in a subgroup of S for some k.
- Every nonempty subset of E has an infimum.
Gril p.110 Nilsemigroup - 0 ∈ S
- ak = 0 for some k.
Gril p.99 Elementary semigroup - ab = ba
- S = G ∪ N where G is a group, N is a nilsemigroup or a one-element semigroup.
- N is ideal of S.
- Identity of G is 1 of S and zero of N is 0 of S.
Gril p.111 E-unitary semigroup - There exists unique x such that axa = a and xax = x.
- ea = e ⇒ a ∈ E
Gril p.245 Finitely presented semigroup - S has a presentation ( X; R ) in which X and R are finite.
Gril p.134 Fundamental semigroup - Equality on S is the only congruence contained in H.
Gril p.88 Groupfree semigroup
(Aperiodic semigroup,
Combinatorial semigroup)- ab = ba
- ak is in a subgroup of S for some k.
- Every nonempty subset of E has an infimum.
- Every subgroup of S is trivial.
Gril p.119 Idempotent generated semigroup - S is equal to the semigroup generated by E.
Gril p.328 Locally finite semigroup - Every finitely generated subsemigroup of S is finite.
Gril p.161 N-semigroup - ab = ba
- There exists x and a positive integer n such that a = xbn.
- ax = ay ⇒ x = y
- xa = ya ⇒ x = y
- E = Ø
Gril p.100 L-unipotent semigroup
(Right inverse semigroup)- La contains a unique e.
Gril p.362 R-unipotent semigroup
(Left inverse semigroup)- Ra contains a unique e.
Gril p.362 Left simple semigroup - La = S
Gril p.57 Right simple semigroup - Ra = S
Gril p.57 Subelementary semigroup - ab = ba
- S = C ∪ N where C is a cancellative semigroup, N is a nilsemigroup or a one-element semigroup.
- N is ideal of S.
- Zero of N is 0 of S.
- For x, y in S and c in C, cx = cy implies that x = y.
Gril p.134 Symmetric semigroup
(Full transformation semigroup)- Set of all mappings of X into itself with composition of mappings as binary operation.
C&P p.2 Weakly reductive semigroup - If xz = yz and zx = zy for all z in S then x = y.
C&P p.11 Right unambiguous semigroup - If x, y ≥R z then x ≥R y or y ≥R x.
Gril p.170 Left unambiguous semigroup - If x, y ≥L z then x ≥L y or y ≥L x.
Gril p.170 Unambiguous semigroup - If x, y ≥R z then x ≥R y or y ≥R x.
- If x, y ≥L z then x ≥L y or y ≥L x.
Gril p.170 Left 0-unambiguous - 0∈ S
- 0 ≠ x ≤L y, z ⇒ y ≤L z or z ≤L y
Gril p.178 Right 0-unambiguous - 0∈ S
- 0 ≠ x ≤R y, z ⇒ y ≤L z or z ≤R y
Gril p.178 0-unambiguous semigroup - 0∈ S
- 0 ≠ x ≤L y, z ⇒ y ≤L z or z ≤L y
- 0 ≠ x ≤R y, z ⇒ y ≤L z or z ≤R y
Gril p.178 Left Putcha semigroup - a ∈ bS1 ⇒ an ∈ b2S1 for some n.
Nagy p.35 Right Putcha semigroup - a ∈ S1b ⇒ an ∈ S1b2 for some n.
Nagy p.35 Putcha semigroup - a ∈ S1b S1 ⇒ an ∈ S1a2S1 for some positive integer n
Nagy p.35 Bisimple semigroup
(D-simple semigroup)- Da = S
C&P p.49 0-bisimple semigroup - 0 ∈ S
- S - {0} is a D-class of S.
C&P p.76 Completely simple semigroup - There exists no A ⊆ S, A ≠ S such that SA ⊆ A and AS ⊆ A.
- There exists h in E such that whenever hf = f and fh = f we have h = f.
C&P p.76 Completely 0-simple semigroup - 0 ∈ S
- S2 ≠ 0
- If A ⊆ S is such that AS ⊆ A and SA ⊆ A then A = 0.
- There exists h in E such that whenever hf = f and fh = f we have h = f or h = 0.
C&P p.76 D-simple semigroup
(Bisimple semigroup)- Da = S
C&P p.49 Semisimple semigroup - Let J(a) = S1aS1, I(a) = J(a) – Ja. Each Rees factor semigroup J(a)/I(a) is 0-simple or simple.
C&P p.71–75 Simple semigroup - There exists no A ⊆ S, A ≠ S such that SA ⊆ A and AS ⊆ A.
C&P p.5 0-simple semigroup - 0 ∈ S
- S2 ≠ 0
- If A ⊆ S is such that AS ⊆ A and SA ⊆ A then A = 0.
C&P p.67 Left 0-simple semigroup - 0 ∈ S
- S2 ≠ 0
- If A ⊆ S is such that SA ⊆ A then A = 0.
C&P p.67 Right 0-simple semigroup - 0 ∈ S
- S2 ≠ 0
- If A ⊆ S is such that AS ⊆ A then A = 0.
C&P p.67 Cyclic semigroup
(Monogenic semigroup)- S = { w, w2, w3, ... } for some w in S
C&P p.19 Monogenic semigroup
(Cyclic semigroup)- S = { w, w2, w3, ... } for some w in S
C&P p.19 Periodic semigroup - { a, a2, a3, ... } is a finite set.
C&P p.20 Bicyclic semigroup - 1 ∈ S
- S generated by { x1, x2 } with x1x2 = 1.
C&P p.43–46 Full transformation semigroup TX
(Symmetric semigroup)- Set of all mappings of X into itself with composition of mappings as binary operation.
C&P p.2 Rectangular semigroup - Whenever three of ax, ay, bx, by are equal, all four are equal.
C&P p.97 Symmetric inverse semigroup IX - The semigroup of one-to-one partial transformations of X.
C&P p.29 Brandt semigroup - 0 ∈ S
- ( ac = bc ≠ 0 or ca = cb ≠ 0 ) ⇒ a = b
- ( ab ≠ 0 and bc ≠ 0 ) ⇒ abc ≠ 0
- If a ≠ 0 there exist unique x, y, z, such that xa = a, ay = a, za = y.
- ( e ≠ 0 and f ≠ 0 ) ⇒ eSf ≠ 0.
C&P p.101 Free semigroup FX - Set of finite sequences of elements of X with the operation
( x1, ... , xm ) ( y1, ... , yn ) = ( x1, ... , xm, y1, ... , yn )
Gril p.18 Rees matrix semigroup - G0 a group G with 0 adjoined.
- P : Λ × I → G0 a map.
- Define an operation in I × G0 × Λ by ( i, g, λ ) ( j, h, μ ) = ( i, g P( λ, μ ) h, μ ).
- ( I, G0, Λ )/( I × { 0 } × Λ ) is the Ress matrix semigroup M0 ( G0; I, Λ ; P ).
C&P p.88 Semigroup of linear transformations - Semigroup of linear transformations of a vector space V over a field F under composition of functions.
C&P p.57 Semigroup of binary relations BX - Set of all binary relations on X under composition
C&P p.13 Numerical semigroup - 0 ∈ S ⊆ N = { 0,1,2, ... } under + .
- N - S is finite
Delg Semigroup with involution
(*-semigroup)- There exists an unary operation a → a* in S such that a** = a and (ab)* = b*a*.
Howi *-semigroup
(Semigroup with involution)- There exists an unary operation a → a* in S such that a** = a and (ab)* = b*a*.
Howi Baer–Levi semigroup - Semigroup of one-to-one transformations f of X such that X − f ( X ) is infinite.
C&P II Ch.8 U-semigroup - There exists a unary operation a → a’ in S such that ( a’)’ = a.
Howi p.102 I-semigroup - There exists a unary operation a → a’ in S such that ( a’)’ = a and aa’a = a.
Howi p.102 Group - There exists h such that ah = ha = a.
- There exists x (depending on a) such that ax = xa = h.
References
[C&P] A H Clifford, G B Preston (1964). The Algebraic Theory of Semigroups Vol. I (Second Edition). American Mathematical Society. ISBN 978-0821802724 [C&P II] A H Clifford, G B Preston (1967). The Algebraic Theory of Semigroups Vol. II (Second Edition). American Mathematical Society. ISBN 0821802720 [Chen] Hui Chen (2006), "Construction of a kind of abundant semigroups", Mathematical Communications (11), 165–171 (Accessed on 25 April 2009} [Delg] M Delgado, et al., Numerical semigroups, [1] (Accessed on 27 April 2009) [Edwa] P Edwards (1983), "Eventually regular semigroups", Bulletin of Australian Mathematical Society 28, 23–38 [Gril] P A Grillet (1995). Semigroups. CRC Press. ISBN 978-0824796624 [Hari] K S Harinath (1979), "Some results on k-regular semigroups", Indian Journal of Pure and Applied Mathematics 10(11), 1422–1431 [Howi] J M Howie (1995), Fundamentals of Semigroup Theory, Oxford University Press [Nagy] Attila Nagy (2001). Special Classes of Semigroups. Springer. ISBN 978-0792368908 [Shum] K P Shum "Rpp semigroups, its generalizations and special subclasses" in Advances in Algebra and Combinatorics edited by K P Shum et al. (2008), World Scientific, ISBN 9812790004 (pp.303–334) [Tvm] Proceedings of the International Symposium on Theory of Regular Semigroups and Applications, University of Kerala, Thiruvananthapuram, India, 1986 Categories:- Algebraic structures
- Abstract algebra
- Semigroup theory
Wikimedia Foundation. 2010.