Composition of relations

Composition of relations

In mathematics, the composition of binary relations is a concept of forming a new relation SR from two given relations R and S, having as its most well-known special case the composition of functions.

Contents

Definition

If R\subseteq X\times Y and S\subseteq Y\times Z are two binary relations, then their composition S\circ R is the relation

S\circ R = \{ (x,z)\in X\times Z\mid \exists y\in Y: (x,y)\in R\land (y,z)\in S \} \subseteq X\times Z.

In other words, S\circ R\subseteq X\times Z is defined by the rule that says (x,z)\in S\circ R if and only if there is an element y\in Y such that x\,R\,y\,S\,z (i.e. (x,y)\in R and (y,z)\in S).

In particular fields, authors might denote by RS what is defined here to be SR. The convention chosen here is such that function composition (with the usual notation) is obtained as a special case, when R and S are functional relations. Some authors[1] prefer to write \circ_l and \circ_r explicitly when necessary, depending whether the left or the right relation is the first one applied.

A further variation encountered in computer science is the Z notation: \circ is used to denote the traditional (right) composition, but ⨾ (a fat semicolon with Unicode code point U+2A3E[2]) denotes left composition. This use of semicolon coincides with the notation for function composition used (mostly by computer scientists) in Category theory. Because U+2A3E is hard to distinguish from a normal semicolon in some fonts at small sizes, its "capital" version ⨟ (U+2A1F[3]) may be preferable in some fonts. In non-Unicode LaTeX, the symbol may obtain using the \fatsemi macro from the stmaryrd package.

The binary relations R\subseteq X\times Y are sometimes regarded as the morphisms R\colon X\to Y in a category Rel which has the sets as objects. In Rel, composition of morphisms is exactly composition of relations as defined above. The category Set of sets is a subcategory of Rel that has the same objects but fewer morphisms. A generalization of this is found in the theory of allegories.

Properties

Composition of relations is associative.

The inverse relation of SR is (SR)-1 = R−1S−1. This property makes the set of all binary relations on a set a semigroup with involution.

The compose of (partial) functions (i.e. functional relations) is again a (partial) function.

If R and S are injective, then SR is injective, which conversely implies only the injectivity of R.

If R and S are surjective, then SR is surjective, which conversely implies only the surjectivity of S.

The set of binary relations on a set X (i.e. relations from X to X) together with (left or right) relation composition forms a monoid with zero, where the identity map on X is the neutral element, and the empty set is the zero element.

Join: another form of composition

Other forms of composition of relations, which apply to general n-place relations instead of binary relations, are found in the join operation of relational algebra. The usual composition of two binary relations as defined here can be obtained by taking their join, leading to a ternary relation, followed by a projection that removes the middle component.

See also

Notes

References

  • M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Composition operator — For information about the operator ∘ of composition, see function composition and composition of relations. In mathematics, the composition operator Cϕ with symbol ϕ is a linear operator defined by the rule where denotes function composition. In… …   Wikipedia

  • COMPOSITION MUSICALE — Dans son Dictionnaire de musique , Jean Jacques Rousseau définit la composition musicale comme «l’art d’inventer et d’écrire des chants, de les accompagner d’une harmonie convenable, de faire, en un mot, une pièce complète de musique avec toutes… …   Encyclopédie Universelle

  • Composition (musique) — Composition musicale Comme tout art, la musique est une création s appuyant sur certaines techniques pour communiquer les ambitions esthétiques du compositeur (voir les deux sens du mot art). La composition musicale désigne alors l étape qui… …   Wikipédia en Français

  • Composition Musicale — Comme tout art, la musique est une création s appuyant sur certaines techniques pour communiquer les ambitions esthétiques du compositeur (voir les deux sens du mot art). La composition musicale désigne alors l étape qui précède directement l… …   Wikipédia en Français

  • Composition — may refer to: Composition (logical fallacy), in which one assumes that a whole has a property solely because its various parts have that property Compounding is also known as composition in linguistic literature in computer science Object… …   Wikipedia

  • Relations entre la Slovaquie et l'Ukraine — Relations entre la Slovaquie et l Ukraine …   Wikipédia en Français

  • Relations diplomatiques — Diplomatie « Diplomate » redirige ici. Pour les autres significations, voir Diplomate (homonymie) et Diplomatie (homonymie) …   Wikipédia en Français

  • Composition musicale — En musique, la composition musicale désigne l étape où le compositeur conçoit l œuvre musicale de manière à ce qu elle corresponde à l expression sonore de sa pensée. Elle précède l interprétation et s’apparente à une conduite inconsciente mais… …   Wikipédia en Français

  • relations of production — Once Karl Marx had concluded that what labourers sold under capitalism was not their labour but their labour power (see labour theory of value ), and so opened up a new dimension of analysis, he was able to shed his dependence on the inherited… …   Dictionary of sociology

  • Relations entre dieux égyptiens — Les relations entre les dieux égyptiens propres aux différentes cosmogonies sont les plus connues : Chou/Tefnout, parents de Geb/Nout lesquels engendrent Osiris/Isis et Seth/Nephtys dans la cosmogonie héliopolitaine, Noun/Nounet, Heh/Hehet,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”