- Ion track technology (introduction)
-
Intro Tasks Materials Irradiation Formation Etching Replica Apps Introduction to ion track technology
Ion tracks are created by swift heavy ions penetrating through solids.[1][2] They correspond to transformed zones >6 nanometer in diameter[3][4] and can be studied by Rutherford Backscattering Spectrometry (RBS),Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS), Small-Angle X-ray Scattering (SAXS) or gas permeation[5]. Ion tracks can be selectively etched in many insulating solids leading to cones or cylinders down to 8 nanometer in diameter.[6] In minerals, ion tracks can remain unaltered for millions of years. Their density tells about the time when the mineral has solidified from its melt and is used as a geological clock in fission track dating. Ion track technology deals with the application of ion tracks in micro- and nanotechnology.[7] Etched track cylinders can be used as filters,[8][9] Coulter counter apertures,[10] be modified with monolayers[11] or filled by electroplating[12][13].
Notes
- ^ D.A. Young (1958). "Etching of radiation damage in lithium fluoride". Nature 182 (4632): 375–377. Bibcode 1958Natur.182..375Y. doi:10.1038/182375a0. PMID 13577844.
- ^ R.L. Fleischer, P.B. Price, R.M. Walker (1975). Nuclear tracks in solids. University of California Press. ISBN 0520026659. http://ion-tracks.de/nuc/index.html.
- ^ F. Seitz, J.S. Koehler (1956). "Displacement of atoms during irradiation". In F. Seitz, D. Turnbull. Solid State Physics. Academic Press. p. 307. LCCN 55012299.
- ^ M. Toulemonde, C. Dufour, A. Meftah, E. Paumier (2000). "Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators". Nuclear Instruments & Methods B 166–167: 903–912. Bibcode 2000NIMPB.166..903T. doi:10.1016/S0168-583X(99)00799-5.
- ^ G. Remmert, Y. Eyal, B.E. Fischer, R. Spohr (1995). "Gas permeability and cross section of latent ion tracks in polymers". Nuclear Instruments and Methods B 105: 197–199.
- ^ W. D. Williams and N. Giordano (1984). "Fabrication of 80 Å metal wires". Review of Scientific Instruments 55 (3): 410–412. Bibcode 1984RScI...55..410W. doi:10.1063/1.1137752.
- ^ R. Spohr (1990). Ion tracks and microtechnology.. Vieweg Verlag. ISBN 3528063300. http://ion-tracks.de/iontracktechnology/index.html.
- ^ R.L. Fleischer, P.B. Price and R.M. Walker (1963). "Method of forming fine holes of near atomic dimensions". Review of Scientific Instruments 34 (5): 510–512. Bibcode 1963RScI...34..510F. doi:10.1063/1.1718419.
- ^ P. Apel (2003). "Swift ion effects in polymers: industrial applications". Nuclear Instruments and Methods in Physics Research Section B 208: 11–20.
- ^ R.W. DeBlois, C.P. Bean (1970). "Counting and sizing of submicron particles by the resistive pulse technique". Review of Scientific Instruments 41 (7): 909–916. Bibcode 1970RScI...41..909D. doi:10.1063/1.1684724.
- ^ W.J. Petzny, J.A. Quinn (1969). "Calibrated membranes with coated pore walls". Science 166 (3906): 751–753. Bibcode 1969Sci...166..751P. doi:10.1126/science.166.3906.751.
- ^ G.E. Possin (1970). "A method for forming very small diameter wires". Review of Scientific Instruments 41 (5): 772–774. Bibcode 1970RScI...41..772P. doi:10.1063/1.1684640.
- ^ J. Vetter. "Free standing metal whiskers". GSI Darmstadt. http://ion-tracks.de/. Retrieved 2010-04-27.
Categories:
Wikimedia Foundation. 2010.