Zeta constant

Zeta constant

In mathematics, a zeta constant is a number obtained by plugging an integer into the Riemann zeta function. This article provides a number of series identities for the zeta function for integer values.

The Riemann zeta function at 0 and 1

At zero, one has:zeta(0)=B_1=-frac{1}{2}.

There is a pole at 1, so

:zeta(1)=infty.,

Positive integers

Even positive integers

For the even positive integers, one has the well-known relationship to the Bernoulli numbers, given by Euler:

:zeta(2n) = (-1)^{n+1}frac{B_{2n}(2pi)^{2n{2(2n)!}

for nge 1. The first few values are given by

:zeta(2) = 1 + frac{1}{2^2} + frac{1}{3^2} + cdots = frac{pi^2}{6} = 1.6449dots; the demonstration of this equality is known as the Basel problem.:zeta(4) = 1 + frac{1}{2^4} + frac{1}{3^4} + cdots = frac{pi^4}{90} = 1.0823dots; Stefan–Boltzmann law and Wien approximation in physics.:zeta(6) = 1 + frac{1}{2^6} + frac{1}{3^6} + cdots = frac{pi^6}{945} = 1.0173...dots:zeta(8) = 1 + frac{1}{2^8} + frac{1}{3^8} + cdots = frac{pi^8}{9450} = 1.00407... dots:zeta(10) = 1 + frac{1}{2^{10 + frac{1}{3^{10 + cdots = frac{pi^{10{93555} = 1.000994...dots:zeta(12) = 1 + frac{1}{2^{12 + frac{1}{3^{12 + cdots = frac{691pi^{12{638512875} = 1.000246dots:zeta(14) = 1 + frac{1}{2^{14 + frac{1}{3^{14 + cdots = frac{2pi^{14{18243225} = 1.0000612dots

The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as

:0=A_n zeta(n) - B_n pi^{n},

where A_n and B_n are integers for all even "n". These are given by the integer sequences OEIS2C|id=A046988 and OEIS2C|id=A002432 in OEIS. Some of these values are reproduced below:

If we let eta_n be the coefficient B/A as above,:zeta(2n) = sum_{ell=1}^{infty}frac{1}{ell^{2n=eta_npi^{2n},then we find recursively,:eta_1 = frac{1}{6};: eta_n=sum_{ell=1}^{n-1}(-1)^{ell-1}frac{eta_{n-ell{(2ell+1)!}+(-1)^{n+1}frac{n}{(2n+1)!}.

This recurrence relation may be derived from that for the Bernoulli numbers.

The sequence for even numbers can also be derived from the Laurent expansion of the cotangent function around 0:

:frac{pi}{2}cot(pi x) = frac{1}{2}x^{-1}-frac{pi^2}{6}x -frac{pi^4}{90} x^3 - frac{pi^6}{945}x^5 + ...

Odd positive integers

For the first few odd natural numbers one has

:zeta(1) = 1 + frac{1}{2} + frac{1}{3} + cdots = infty; this is the harmonic series.:zeta(3) = 1 + frac{1}{2^3} + frac{1}{3^3} + cdots = 1.20205dots ; this is called Apéry's constant:zeta(5) = 1 + frac{1}{2^5} + frac{1}{3^5} + cdots = 1.03692dots :zeta(7) = 1 + frac{1}{2^7} + frac{1}{3^7} + cdots = 1.00834dots:zeta(9) = 1 + frac{1}{2^9} + frac{1}{3^9} + cdots = 1.002008dots

It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2"n"+1) ("n" ∈ N) are irrational. There are also results on the (ir)rationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers. For example: At least one of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.

Most of the identities following below are provided by Simon Plouffe. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.

ζ(5)

Plouffe gives the identities

:zeta(5)=frac{1}{294}pi^5 -frac{72}{35} sum_{n=1}^infty frac{1}{n^5 (e^{2pi n} -1)}-frac{2}{35} sum_{n=1}^infty frac{1}{n^5 (e^{2pi n} +1)}

and :zeta(5)=12 sum_{n=1}^infty frac{1}{n^5 sinh (pi n)}-frac{39}{20} sum_{n=1}^infty frac{1}{n^5 (e^{2pi n} -1)}-frac{1}{20} sum_{n=1}^infty frac{1}{n^5 (e^{2pi n} +1)}

ζ(7)

:zeta(7)=frac{19}{56700}pi^7 -2 sum_{n=1}^infty frac{1}{n^7 (e^{2pi n} -1)}

Note that the sum is in the form of the Lambert series.

ζ(2n+1)

By defining the quantities

:S_pm(s) = sum_{n=1}^infty frac{1}{n^s (e^{2pi n} pm 1)}

a series of relationships can be given in the form

:0=A_n zeta(n) - B_n pi^{n} + C_n S_-(n) + D_n S_+(n),

where A_n, B_n, C_n and D_n are positive integers. Plouffe gives a table of values:

These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.

Negative integers

In general, for negative integers, one has

:zeta(-n)=-frac{B_{n+1{n+1}

for nge 1.

The so-called "trivial zeros" occur at the negative even integers:

:zeta(-2n)=0.,

The first few values for negative odd integers are

:zeta(-1)=-frac{1}{12}

:zeta(-3)=frac{1}{120}

:zeta(-5)=-frac{1}{252}

:zeta(-7)=frac{1}{240}.

However, just like the Bernoulli numbers, these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · ·.

Derivatives

The derivative of the zeta function at the negative even integers is given by

:zeta^{prime}(-2n) = (-1)^n frac {(2n)!} {2 (2pi)^{2n zeta (2n+1).

The first few values of which are

:zeta^{prime}(-2) = -frac{zeta(3)}{4pi^2}

:zeta^{prime}(-4) = frac{3}{4pi^4} zeta(5)

:zeta^{prime}(-6) = -frac{45}{8pi^6} zeta(7)

:zeta^{prime}(-8) = frac{315}{4pi^8} zeta(9).

One also has

:zeta^{prime}(0) = -frac{1}{2}log(2pi)approx -0.918938533ldots

and

:zeta^{prime}(-1)=frac{1}{12}-log A approx -0.165421137ldots

where A is the Glaisher-Kinkelin constant.

um of Zeta Constants

:sum_{k=2}^infty (zeta(k) -1) = 1

References

* Simon Plouffe, " [http://www.lacim.uqam.ca/~plouffe/identities.html Identities inspired from Ramanujan Notebooks] ", (1998).
* Simon Plouffe, " [http://www.lacim.uqam.ca/~plouffe/inspired22.html Identities inspired by Ramanujan Notebooks part 2] ] [http://www.lacim.uqam.ca/~plouffe/inspired2.pdf PDF] " (2006).
* Linas Vepstas, " [http://www.linas.org/math/plouffe-ram.pdf On Plouffe's Ramanujan Identities] ", ArXiv [http://arxiv.org/abs/Math.NT/0609775 Math.NT/0609775] (2006).
* Wadim Zudilin, "One of the Numbers ζ(5), ζ(7), ζ(9), ζ(11) Is Irrational." Uspekhi Mat. Nauk 56, 149-150, 2001. [http://wain.mi.ras.ru/PS/zeta5-11$.pdf PDF] [http://wain.mi.ras.ru/PS/zeta5-11$.ps.gz PS] [http://wain.mi.ras.ru/PS/zeta5-11.pdf PDF Russian] [http://wain.mi.ras.ru/PS/zeta5-11.ps.gz PS Russian]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Zeta Tau Alpha — Infobox Fraternity letters= ΖΤΑ name= Zeta Tau Alpha crest= founded= Birth date and age|1898|10|15 birthplace= Longwood University (Farmville, Virginia) type= Social emphasis= scope= mission= vision= motto= Seek the Noblest maxim= colors=… …   Wikipedia

  • Catalan's constant — In mathematics, Catalan s constant G , which occasionally appears in estimates in combinatorics, is defined by:G = eta(2) = sum {n=0}^{infty} frac{( 1)^{n{(2n+1)^2} = frac{1}{1^2} frac{1}{3^2} + frac{1}{5^2} frac{1}{7^2} + cdotswhere β is the… …   Wikipedia

  • Euler–Mascheroni constant — Euler s constant redirects here. For the base of the natural logarithm, e ≈ 2.718..., see e (mathematical constant). The area of the blue region is equal to the Euler–Mascheroni constant. List of numbers – Irrational and suspected irrational… …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Apéry's constant — In mathematics, Apéry s constant is a curious number that occurs in a variety of situations. It rises naturally in a number of physical problems, including in the second and third order terms of the electron s gyromagnetic ratio using quantum… …   Wikipedia

  • Khinchin's constant — In number theory, Aleksandr Yakovlevich Khinchin proved that for almost all real numbers x , the infinitely many denominators a i of the continued fraction expansion of x have an astonishing property: their geometric mean is a constant, known as… …   Wikipedia

  • Mathematical constant — A mathematical constant is a special number, usually a real number, that is significantly interesting in some way .[1] Constants arise in many different areas of mathematics, with constants such as e and π occurring in such diverse contexts as… …   Wikipedia

  • Rational zeta series — In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x , the… …   Wikipedia

  • Histoire De La Fonction Zeta De Riemann — Histoire de la fonction zêta de Riemann Cet article présente une histoire de la fonction zêta de Riemann. Pour une présentation mathématique de la fonction et de ses propriétés, voir : Article principal : fonction zêta de Riemann. Un… …   Wikipédia en Français

  • Histoire de la fonction Zeta de Riemann — Histoire de la fonction zêta de Riemann Cet article présente une histoire de la fonction zêta de Riemann. Pour une présentation mathématique de la fonction et de ses propriétés, voir : Article principal : fonction zêta de Riemann. Un… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”