Momentum operator

Momentum operator

In quantum mechanics, momentum is defined as an operator on the wave function. The Heisenberg uncertainty principle defines limits on how accurately the momentum and position of a single observable system can be known at once. In quantum mechanics, position and momentum are conjugate variables.

For a single particle with no electric charge and no spin, the momentum operator can be written in the position basis as

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla

where:

In one space dimension this becomes:

\mathbf{p}=p_{x}={\hbar\over i}{\partial \over \partial x}=-i\hbar{\partial \over \partial x}.

This is a commonly encountered form of the momentum operator, though not the most general one.

The momentum operator is always a Hermitian operator when it acts on physical (in particular, normalizable) quantum states.[1]

Contents

Fourier transform

One can show that the Fourier transform of the momentum in quantum mechanics is the position operator. The Fourier transform turns the momentum-basis into the position-basis.

 \langle  x | \hat{p} | \psi \rangle = - i \hbar {d \over dx} \psi ( x )

The same applies for the Position operator in the momentum basis:

 \langle  p | \hat{x} | \psi \rangle =  i \hbar {d \over dp} \psi ( p )

and other useful relations:

 \langle p | \hat{x} | p' \rangle = i \hbar {d \over dp} \delta (p - p')
 \langle x | \hat{p} | x' \rangle = -i \hbar {d \over dx} \delta (x - x')

where δ stands for Dirac's delta function.

Derivation

Suppose we have an infinitesimal translation operator T(\epsilon), where \epsilon represents the length of the infinitesimal translation, then

 T(\epsilon) | \psi \rangle =  \int dx T(\epsilon) | x \rangle \langle x | \psi \rangle

that becomes

 \int dx | x + \epsilon \rangle \langle x | \psi \rangle = \int dx | x \rangle \langle x - \epsilon | \psi \rangle = \int dx | x \rangle  \psi(x - \epsilon)

We assume the function ψ to be analytic (or simply differentiable, for simplicity), so we may write:

\psi(x-\epsilon) = \psi(x) - \epsilon {d \psi \over dx}

so we have for infinitesimal values of epsilon:

 T(\epsilon) = 1 - \epsilon {d \over dx}  = 1 - {i \over \hbar} \epsilon \left ( - i \hbar{ d \over dx} \right )

we know from classical mechanics that momentum is the generator of translation, so we know that

 T(\epsilon) =  1 - {i \over \hbar} \epsilon \hat{p}

thus

 \hat{p} = - i \hbar { d \over dx }

Canonical commutation relation

One can easily show that by appropriately using the momentum basis and the position basis:

 \left [ \hat{ x }, \hat{ p } \right ] = \hat{x} \hat{p} - \hat{p} \hat{x} = i \hbar.

References

  1. ^ See Lecture notes 1 by Robert Littlejohn for a specific mathematical discussion and proof for the case of a single, uncharged, spin-zero particle. See Lecture notes 4 by Robert Littlejohn for the general case.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • momentum operator — judesio kiekio operatorius statusas T sritis fizika atitikmenys: angl. linear momentum operator; momentum operator vok. Impulsoperator, m rus. оператор импульса, m; оператор количества движения, m pranc. opérateur de quantité de mouvement, m;… …   Fizikos terminų žodynas

  • Angular momentum operator — In quantum mechanics, the angular momentum operator is an operator analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic physics and other quantum problems involving rotational… …   Wikipedia

  • linear momentum operator — judesio kiekio operatorius statusas T sritis fizika atitikmenys: angl. linear momentum operator; momentum operator vok. Impulsoperator, m rus. оператор импульса, m; оператор количества движения, m pranc. opérateur de quantité de mouvement, m;… …   Fizikos terminų žodynas

  • orbital angular momentum operator — orbitinio judesio kiekio momento operatorius statusas T sritis fizika atitikmenys: angl. orbital angular momentum operator vok. Bahndrehimpulsoperator, m; Bahnimpulsoperator, m; Bahnmomentoperator, m rus. оператор орбитального момента количества… …   Fizikos terminų žodynas

  • angular momentum operator — judesio kiekio momento operatorius statusas T sritis fizika atitikmenys: angl. angular momentum operator vok. Drehimpulsoperator, m rus. оператор момента количества движения, m pranc. opérateur du moment cinétique, m; opérateur du moment de… …   Fizikos terminų žodynas

  • total angular momentum operator — pilnutinio judesio kiekio momento operatorius statusas T sritis fizika atitikmenys: angl. total angular momentum operator vok. Gesamtdrehimpulsoperator, m rus. оператор полного момента количества движения, m pranc. opérateur du moment angulaire… …   Fizikos terminų žodynas

  • Momentum — This article is about momentum in physics. For other uses, see Momentum (disambiguation). Classical mechanics Newton s Second Law …   Wikipedia

  • Momentum space — The momentum space or k space associated with a particle is a vector space in which every point {kx,ky,kz} corresponds to a possible value of the momentum vector . Representing a problem in terms of the momenta of the particles involved, rather… …   Wikipedia

  • Operator (physics) — In physics, an operator is a function acting on the space of physical states. As a result of its application on a physical state, another physical state is obtained, very often along with some extra relevant information. The simplest example of… …   Wikipedia

  • Angular momentum — For a generally accessible and less technical introduction to the topic, see Introduction to angular momentum. Classical mechanics Newton s Second Law …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”