Law of definite proportions

Law of definite proportions

In chemistry, the law of definite proportions, sometimes called Proust's Law, states that a chemical compound always contains exactly the same proportion of elements by mass. An equivalent statement is the law of constant composition, which states that all samples of a given chemical compound have the same elemental composition. For example, oxygen makes up about 8/9 of the mass of any sample of pure water, while hydrogen makes up the remaining 1/9 of the mass. Along with the law of multiple proportions, the law of definite proportions forms the basis of stoichiometry.[1]

Contents

History

This observation was first made by the French chemist Joseph Proust, based on several experiments conducted between 1798 and 1804.[2] Based on such observations, Proust made statements like this one, in 1806:

I shall conclude by deducing from these experiments the principle I have established at the commencement of this memoir, viz. that iron like many other metals is subject to the law of nature which presides at every true combination, that is to say, that it unites with two constant proportions of oxygen. In this respect it does not differ from tin, mercury, and lead, and, in a word, almost every known combustible.

The law of definite proportions might seem obvious to the modern chemist, inherent in the very definition of a chemical compound. At the end of the 18th century, however, when the concept of a chemical compound had not yet been fully developed, the law was novel. In fact, when first proposed, it was a controversial statement and was opposed by other chemists, most notably Proust's fellow Frenchman Claude Louis Berthollet, who argued that the elements could combine in any proportion.[3] The existence of this debate demonstrates that, at the time, the distinction between pure chemical compounds and mixtures had not yet been fully developed.[4]

The law of definite proportions contributed to, and was placed on a firm theoretical basis by, the atomic theory that John Dalton promoted beginning in 1803, which explained matter as consisting of discrete atoms, that there was one type of atom for each element, and that the compounds were made of combinations of different types of atoms in fixed proportions.[5]

A related early idea was Proust's hypothesis, which supposed that hydrogen was the only functional unit, and was related to the whole number rule, which was the rule of thumb that atomic masses were whole number multiples of the mass of hydrogen. This was later rejected in the 1820s and 30s following more refined measurements of atomic mass, notably by Jöns Jacob Berzelius, which revealed in particular that the atomic mass of chlorine was 35.45, which was incompatible with the hypothesis. Since the 1920s this discrepancy has been explained by the presence of isotopes; the atomic mass of any isotope is very close to satisfying the whole number rule, with the mass defect caused by differing binding energies being significantly smaller.

Non-stoichiometric compounds

Although very useful in the foundation of modern chemistry, the law of definite proportions is not universally true. There exist non-stoichiometric compounds whose elemental composition can vary from sample to sample. An example is the iron oxide wüstite, which can contain between 0.83 and 0.95 iron atoms for every oxygen atom, and thus contain anywhere between 23% and 25% oxygen by mass. In general, Proust's measurements were not accurate enough to detect such variations.

In addition, the isotopic composition of an element can vary depending on its source, hence its contribution to the mass of even a pure stoichiometric compound may vary. This variation is used in geochemical dating since astronomical, atmospheric, oceanic, crustal and deep Earth processes may concentrate lighter or heavier isotopes preferentially. With the exception of hydrogen and its isotopes, the effect is usually small, but is measurable with modern instrumentation.

An additional note: many natural polymers vary in composition (for instance DNA, proteins, carbohydrates) even when "pure". Polymers are generally not considered "pure chemical compounds" except when their molecular weight is uniform (monodisperse) and their stoichiometry is constant. In this unusual case, they still may violate the law due to isotopic variations.

See also

References

  1. ^ Zumdahl, S. S. “Chemistry” Heath, 1986: Lexington, MA. ISBN 0-669--04529-2.
  2. ^ For example: Proust, J.-L. (1799). Researches on copper, Ann. chim., 32:26-54. Excerpt, in Henry M. Leicester and Herbert S. Klickstein, A Source Book in Chemistry, 1400-1900, Cambridge, MA: Harvard, 1952. Accessed 2008-05-08.
  3. ^ See Dalton, J. (1808). op. cit., ch. II, that Berthollet held the opinion that in all chemical unions, there exist insensible gradations in the proportions of the constituent principles.
  4. ^ Proust argued that compound applies only to materials with fixed proportions: Proust, J.-L. (1806). Sur les mines de cobalt, nickel et autres, Journal de Physique, 63:566-8. Excerpt, from Maurice Crosland, ed., The Science of Matter: a Historical Survey, Harmondsworth, UK: Penguin, 1971. Accessed 2008-05-08.
  5. ^ Dalton, J. (1808). A New System of Chemical Philosophy, volume 1, Manchester. Excerpt. Accessed 2008-05-08.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Law of definite proportions — Definite Def i*nite, a. [L. definitis, p. p. of definire: cf. F. d[ e]fini. See {Define}.] 1. Having certain or distinct; determinate in extent or greatness; limited; fixed; as, definite dimensions; a definite measure; a definite period or… …   The Collaborative International Dictionary of English

  • law of definite proportions — law of def·i·nite pro·por·tions def (ə )nət prə pȯr shənz n a statement in chemistry: every definite compound always contains the same elements in the same proportions by weight * * * any compound always contains the same kind of elements in the …   Medical dictionary

  • law of definite proportions — noun (chemistry) law stating that every pure substance always contains the same elements combined in the same proportions by weight • Syn: ↑law of constant proportion • Topics: ↑chemistry, ↑chemical science • Hypernyms: ↑law, ↑ …   Useful english dictionary

  • law of definite proportions — Date: 1830 a statement in chemistry: every definite compound always contains the same elements in the same proportions by weight …   New Collegiate Dictionary

  • law of constant proportions — n LAW OF DEFINITE PROPORTIONS …   Medical dictionary

  • Law of multiple proportions — In chemistry, the law of multiple proportions is one of the basic laws and a major tool of chemical measurement (stoichiometry). It states that when elements combine they do so in a ratio of small whole numbers. For example, carbon and oxygen… …   Wikipedia

  • law of constant proportions — pastoviųjų santykių dėsnis statusas T sritis fizika atitikmenys: angl. law of constant proportions; law of definite composition vok. Gesetz der konstanten Gewichtsverhältnisse, n; Gesetz der konstanten Proportionen, n; Gesetz der konstanten… …   Fizikos terminų žodynas

  • law of definite composition — pastoviųjų santykių dėsnis statusas T sritis fizika atitikmenys: angl. law of constant proportions; law of definite composition vok. Gesetz der konstanten Gewichtsverhältnisse, n; Gesetz der konstanten Proportionen, n; Gesetz der konstanten… …   Fizikos terminų žodynas

  • definite proportions, law of — ▪ chemistry       statement that every chemical compound contains fixed and constant proportions (by weight) of its constituent elements. Although many experimenters had long assumed the truth of the principle in general, the French chemist… …   Universalium

  • law of definite composition — 1. Chem. the statement that in a pure compound the elements are always combined in fixed proportions by weight. 2. Logic. the law that either a proposition or its denial must be true. * * * …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”