- Wüstite
Infobox mineral
name = Wüstite
category =
boxwidth =
boxbgcolor =
imagesize =
caption =
formula = FeO
molweight =
color = Greyish white to yellow or brown; colourless in thin section
habit = Pyramidic, prismatic
system = Cubic
twinning =
cleavage = {001} perfect
fracture = Subconchoidal to rough
mohs = 5 - 5.5
luster =
refractive = 1.735 to 2.32 in synthetic crystals
opticalprop =
birefringence =
pleochroism = None
streak =
gravity = 5.88
density = 5.7 g/cm³
melt =
fusibility =
diagnostic =
solubility = Soluble in dilute HCl
diaphaneity =
other = Forms solid solution withpericlase Wüstite (FeO) is a mineral form of
iron(II) oxide found withmeteorite s and nativeiron . It has a gray color with a greenish tint in reflectedlight . Wüstite crystallizes in the isometric - hexoctahedral crystal system in opaque to translucent metallic grains. It has aMohs hardness of 5 to 5.5 and aspecific gravity of 5.88. Wüstite is a typical example of anon-stoichiometric compound .Wüstite was named for
Fritz Wüst (1860-1938), a Germanmetallurgist and founding director of the Kaiser-Wilhelm-Institut für Eisenforschung. [Schenck, Rudolf & Dingmann, Th.; 1927: Gleichgewichtsuntersuchungen über die Reduktions-, Oxydations- und Kohlungsvorgänge beim Eisen III, in: Zeitschrift für anorganische und allgemeine Chemie 166, p. 113-154, here p. 141.]In addition to the type locality in Germany, it has been reported from Disko Island, Greenland; the
Jharia coalfield,Jharkhand , India and as inclusions indiamond s in a number ofkimberlite pipes. It also is reported from deep seamanganese nodule s.Its presence indicates a highly reducing environment.
Wüstite Redox Buffer
: "Main article:
Mineral redox buffer "Wüstite, in geochemistry, defines a "redox buffer" of oxidation within rocks at which point the rock is so reduced that Fe3+ and thus
hematite is absent.As the redox state of a rock is further reduced,
magnetite is converted to wüstite. This occurs by conversion of the Fe3+ ions in magnetite to Fe2+ ions. An example reaction is presented below::FeO.Fe2O3 + C --> 3FeO + CO:"magnetite + graphite/diamond --> wüstite + carbon monoxide"
The formula for magnetite is more accurately written as FeO.Fe2O3 than as Fe3O4. Magnetite is one part wüstite (FeO) and one part hematite (Fe2O3), rather than a
solid solution of wüstite and hematite. The magnetite is termed a "redox buffer" because until all Fe3+ magnetite is converted to Fe2+ the oxide mineral assemblage of iron remains wüstite-magnetite, and furthermore the redox state of the rock remains at the same level ofoxygen fugacity . This is similar to buffering in the H+/OH- acid-base system of water.Once the Fe3+ is consumed, then oxygen must be stripped from the system to further reduce it and wüstite is converted to native iron. The oxide mineral equilibrium assemblage of the rock becomes wüstite-magnetite-iron.
In nature, the only natural systems which are chemically reduced enough to even attain a wüstite-magnetite composition are rare, including carbonate-rich
skarn s, meteorites and perhaps the mantle where reduced carbon is present, exemplified by the presence ofdiamond and/orgraphite .Effects upon silicate minerals
"Main article:
Normative mineralogy "The ratio of Fe2+ to Fe3+ within a rock determines, in part, the silicate mineral assemblage of the rock. Within a rock of a given chemical composition, iron enters minerals based on the bulk chemical composition and the mineral phases which are stable at that temperature and pressure. Iron may only enter minerals such as
pyroxene andolivine if it is present as Fe2+; Fe3+ cannot enter the lattice of fayalite olivine and thus for every two Fe3+ ions, one Fe2+ is used and one molecule of magnetite is created.In chemically reduced rocks, magnetite may be absent due to the propensity of iron to enter olivine, and wüstite may only be present if there is an excess of iron above what can be used by silica. Thus, wüstite may only be found in silica-undersaturated compositions which are also heavily chemically reduced, satisfying both the need to remove all Fe3+ and to maintain iron outside of silicate minerals.
In nature, carbonate rocks, potentially
carbonatite ,kimberlite s, carbonate-bearing melilitic rocks and other rare alkaline rocks may satisfy these criteria. However, wüstite is not reported in most of these rocks in nature, potentially because the redox state necessary to drive magnetite to wüstite is so rare.Related minerals
Wüstite forms a solid solution with
periclase (MgO), and Fe substitutes for Mg. Periclase, when hydrated, formsbrucite (Mg(OH)2), a common product ofserpentinite metamorphic reaction s.Oxidation of wüstite forms goethite-limonite.
Zinc, aluminium and other transition metals may substitute for Fe in wüstite.
Wüstite in dolomite skarns may be related to
siderite (Fe-carbonate),wollastonite ,enstatite ,diopside andmagnesite .See also
*
Normative mineralogy
*Redox
*Kimberlite
*Skarn
*Periclase References
* [http://rruff.geo.arizona.edu/doclib/hom/wustite.pdf Mineral Data Pub. PDF file] Accessed 3/5/2006
* [http://euromin.w3sites.net/mineraux/WUSTITE.html Euromin] Accessed 3/5/2006
* [http://www.mindat.org/min-4316.html Wüstite on Mindat.org] Accessed 3/5/2006
* [http://webmineral.com/data/Wustite.shtml Webmineral data] Accessed 3/5/2006
Wikimedia Foundation. 2010.