Original antigenic sin

Original antigenic sin

Original antigenic sin, also known as the Hoskins effect,[1] refers to the propensity of the body's immune system to preferentially utilize immunological memory based on a previous infection when a second slightly different version, of that foreign entity (e.g. a virus or bacterium) is encountered. This leaves the immune system "trapped" by the first response it has made to each antigen, and unable to mount potentially more effective responses during subsequent infections. The phenomenon of original antigenic sin has been described in relation to influenza virus, dengue fever, human immunodeficiency virus (HIV), and to several other viruses.[2]

This phenomenon was first described in 1960 by Thomas Francis, Jr. in the article "On the Doctrine of Original Antigenic Sin".[3][4] It is named by analogy to the theological concept of original sin. According to Thomas Francis who originally described the idea [3] and cited by Richard Krause:[4]

"The antibody of childhood is largely a response to dominant antigen of the virus causing the first type A influenza infection of the lifetime. [...] The imprint established by the original virus infection governs the antibody response thereafter. This we have called the Doctrine of the Original Antigenic Sin."

Contents

In B cells

A high affinity memory B cell, specific for Virus A, is preferentially activated by a new strain, Virus A1, to produce antibodies that ineffectively bind to the A1 strain. The presence of these antibodies inhibits activation of a naive B cell that produces more effective antibodies against Virus A1. This effect leads to a diminished immune response against Virus A1, and heightens the potential for serious infection.

During a primary infection, long-lived memory B cells are generated, which remain in the body, and provide protection from subsequent infections. These memory B cells respond to specific epitopes on the surface of viral proteins in order to produce antigen-specific antibodies, and are able to respond to infection much faster than B cells are able to respond to novel antigens. This effect shortens the amount of time required to clear subsequent infections.

Between primary and secondary infections, or following vaccination, a virus may undergo antigenic drift, in which the viral surface proteins (the epitopes) are altered through natural mutation, allowing the virus to escape the immune system. When this happens, the altered virus preferentially reactivates previously activated high-affinity memory B cells and spur antibody production. However, the antibodies produced by these B cells generally ineffectively bind to the altered epitopes. In addition, these antibodies inhibit the activation of lower-affinity naive B cells that would be able to make more effective antibodies to the second virus. This leads to a less effective immune response and recurrent infections may take longer to clear.[5]

Original antigenic sin is of particular importance in the application of vaccines. The specificity and the quality of the immune response is often diminished in individuals who are repeatedly immunized (by vaccination or recurrent infections). However, the impact of antigenic sin on protection has not been well established, and appears to differ with each infectious agent vaccine, geographic location, and age.[5] .

In cytotoxic T cells

A similar phenomenon has been described in cytotoxic T cells (CTL).[6] Several groups have attempted to design vaccines for HIV and hepatitis C based on induction of cytotoxic (CTL) responses. The finding that CTL may be biased by original antigenic sin, may help to explain the limited effectiveness of these vaccines. Viruses like HIV are highly variable and undergo mutation frequently, and thus, due to original antigenic sin, HIV infection induced by viruses that express slightly different epitopes (than those in a viral vaccine) would fail to be controlled by the vaccine. In fact, the vaccine might make the infection even worse, by "trapping" the immune response into the first, ineffective, response it made against the virus.[6]

See also

  • Antibody-dependent enhancement
  • Cell mediated immunity
  • Humoral immunity
  • Polyclonal response

References

  1. ^ FDA Center for Biologics Evaluaion and Research Vaccines and Related Biological Products: Advisory Committee(RTF)
  2. ^ Deem, Michael W.The Adaptive Immune Response Rice University
  3. ^ a b Thomas Francis, Jr. (Dec. 15, 1960). "On the doctrine of original antigenic sin." Proceedings of the American Philosophical Society 104(6): 572–578.
  4. ^ a b Krause R (2006). "The swine flu episode and the fog of epidemics". Emerg Infect Dis 12(1): 40-43, PMID 16494715.
  5. ^ a b Lambert PH, Liu M, Siegrist CA (2005). "Can successful vaccines teach us how to induce efficient protective immune responses?". Nat Med 11(4 Suppl): S54-62, PMID 15812491, doi:10.1038/nm1216.
  6. ^ a b McMichael AJ (1998). "The original sin of killer T cells". Nature 394(6692): 421-422, PMID 9697760, doi:10.1038/28738.

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Original antigenic sin — Die Antigenerbsünde (eng.: original antigenic sin) bezeichnet ein Phänomen der antiviralen Immunantwort. Kommen Individuen, die zuvor schon einmal mit einer Virusvariante infiziert wurden, mit einer zweiten Variante diese Virus in Kontakt, so… …   Deutsch Wikipedia

  • Pecado original antigénico — Saltar a navegación, búsqueda El pecado original antigénico (descrito por primera vez en 1960 por Thomas Francis, Jr. en el artículo On the Doctrine of Original Antigenic Sin,[1] también conocido como el efecto Hoskins[2] ) se refiere a la… …   Wikipedia Español

  • Antigen — Each antibody binds to a specific antigen; an interaction similar to a lock and key. An antigen is a foreign molecule that, when introduced into the body, triggers the production of an antibody by the immune system. The immune system will then… …   Wikipedia

  • Immune system — A scanning electron microscope image of a single neutrophil (yellow), engulfing anthrax bacteria (orange). An immune system is a system of biological structures and processes within an organism that protects against disease by identifying and… …   Wikipedia

  • Influenza research — involves investigating molecular virology, pathogenesis, host immune responses, genomics, and epidemiology regarding influenza. The main goal of research is to develop influenza countermeasures such as vaccines, therapies and diagnostic tools.The …   Wikipedia

  • B cell — B cells are lymphocytes that play a large role in the humoral immune response (as opposed to the cell mediated immune response, which is governed by T cells). The principal functions of B cells are to make antibodies against antigens, perform the …   Wikipedia

  • Adaptive immune system — The adaptive immune system is composed of highly specialized, systemic cells and processes that eliminate or prevent pathogenic challenges. Thought to have arisen in the first jawed vertebrates, the adaptive or specific immune system is activated …   Wikipedia

  • List of vaccine topics — Flu vaccine This is a list of vaccine related topics. A vaccine is a biological preparation that improves immunity to a particular disease. A vaccine typically contains an agent that resembles a disease causing microorganism, and is often made… …   Wikipedia

  • Antigenerbsünde — Die Antigenerbsünde (englisch: original antigenic sin) bezeichnet ein Phänomen der antiviralen Immunantwort. Kommen Individuen, die zuvor schon einmal mit einer Virusvariante infiziert wurden, mit einer zweiten Variante dieses Virus in Kontakt,… …   Deutsch Wikipedia

  • Dengue fever outbreaks — Worldwide dengue distribution, 2006. Red: Epidemic dengue. Blue: Aedes aegypti …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”