- Phylogenetic profiling
Phylogenetic profiling is an important and elegant
bioinformatics technique in which the joint presence or joint absence of two traits across large numbers of species is used to infer a meaningful biological connection, such as involvement of two different proteins in the same biological pathway. Along with examination of conservedsynteny , conservedoperon structure, or "Rosetta Stone" domain fusions, comparing phylogenetic profiles is a designated a "post-homology" technique, in that the computation essential to method begins after it is determined which proteins are homologous to which. A number of these techniques were developed byDavid Eisenberg and colleagues; phylogenetic profile comparison was introduced in 1999 by Pellegrini, "et al." [Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4285-8.]Method
Over 500 species of
Bacteria ,Archaea , andEukaryotes now are represented by complete DNAgenome sequences. Typically, eachgene in genome encodes aprotein that can be assigned to a particularprotein family on the basis ofhomology . For a given protein family, its presence or absence in each genome (in the original formulation) is represented by 1 (present) and 0 (absent). Consequently, thephylogenetic distribution of the protein family can be represented by a long binary number with a digit for each genome; such binary representations readily are compared with each other to look for correlated phylogenetic distributions. The large number of complete genomes makes these profiles rich in information. The advantage of using only complete genomes is that the 0 values, representing the absence of a trait, tend to be reliable.Theory
Closely related species should be expected to have very similar sets of genes. However, changes accumulate between more distantly related species by processes that include
horizontal gene transfer and gene loss. Individual proteins have specific molecular functions, such as carrying out a single enzymatic reaction or serving as one subunit of a larger protein complex. A biological process such asphotosynthesis ,methanogenesis , orhistidine biosynthesis may require the concerted action of many proteins. If some protein critical to a process is lost, other proteins dedicated to that process would become useless;natural selection makes it unlikely they will be retained over evolutionary time. Therefore, should two different protein families tend always to be either both present or both absent, a likelyhypothesis is that the two proteins cooperate in some biological process.Advances and Challenges
Phylogenetic profiling has led to numerous discoveries in biology, including previously unknown enzymes in metabolic pathways, transcription factors that bind to conserved regulatory sites, and explanations for roles of certain mutations in human disease [Kensche PR, van Noort V, Dutilh BE, Huynen MA. J R Soc Interface. 2008 Feb 6;5(19):151-70.] . Improving the method itself is an active area of scientific research because the method itself faces several limitations. First, co-occurrence of two protein families often represents recent common ancestry of two species rather than a conserved functional relationship; disambiguating these two sources of correlation may require improved statistical methods. Second, proteins grouped as homologs may differ in function, or proteins conserved in function may fail to register as homologs; improved methods for tailoring the size of each protein family to reflect functional conservation will lead to improved results.
Notes
Wikimedia Foundation. 2010.