Struve function

Struve function

In mathematics, Struve functions \mathbf{H}_\alpha(x), are solutions y(x) of the non-homogenous Bessel's differential equation:

x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = \frac{4{(x/2)}^{\alpha+1}}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}

introduced by Hermann Struve (1882). The complex number α is the order of the Struve function, and is often an integer. The modified Struve functions \mathbf{L}_\alpha(x) are equal to -i e^{-i\alpha \pi /2} \mathbf{H}_\alpha(ix).

Contents

Definitions

Since this is a non-homogenous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogenous solutions are the Bessel functions, and the particular solution may be chosen as the corresponding Struve function.

Power series expansion

Struve functions, denoted as \mathbf{H}_\alpha(x) have the following power series form

 \mathbf{H}_\alpha(x) = 
   \sum_{m=0}^\infty \frac{(-1)^m}{\Gamma(m+\frac{3}{2}) \Gamma(m+\alpha+\frac{3}{2})}
                                  {\left({\frac{x}{2}}\right)}^{2m+\alpha+1}

where Γ(z) is the gamma function.

Integral form

Another definition of the Struve function, for values of α satisfying \operatorname{Re}\{ \alpha \} > -1/2, is possible using an integral representation:

\mathbf{H}_\alpha(x) = 
       \frac{2{(x/2)}^{\alpha}}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}
       \int_{0}^{\pi/2} \sin (x \cos \tau)\sin^{2\alpha}(\tau) d\tau.

Asymptotic forms

For small x, the power series expansion is given above.

For large x, one obtains:

\mathbf{H}_\alpha(x) - Y_\alpha(x) \rightarrow 
       \frac{1}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} {\left(\frac{x}{2}\right)}^{\alpha-1}
       + O\left({(x/2)}^{\alpha-3}\right)

where Yα(x) is the Neumann function.

Properties

The Struve functions satisfy the following recurrence relations:


\mathbf{H}_{\alpha -1}(x) + \mathbf{H}_{\alpha+1}(x) = 
   \frac{2\alpha}{x} \mathbf{H}_\alpha (x) + \frac{{(x/2)}^\alpha}{\sqrt{\pi}\Gamma(\alpha + \frac{3}{2})}

\mathbf{H}_{\alpha -1}(x) - \mathbf{H}_{\alpha+1}(x) = 
   2\frac{\mathrm{d}\mathbf{H}_\alpha}{\mathrm{d}x}  - 
   \frac{{(x/2)}^\alpha}{\sqrt{\pi}\Gamma(\alpha + \frac{3}{2})}.

Relation to other functions

Struve functions of integer order can be expressed in terms of Weber functions En and vice versa: if n is a non-negative integer then

\mathbf{E}_n(z)=\frac{1}{\pi} \sum_{k=0}^{[\frac{n-1}{2}]}\frac{\Gamma(k+1/2)(z/2)^{n-2k-1}}{\Gamma(n-1/2-k)}\mathbf{H}_n
\mathbf{E}_{-n}(z)=\frac{(-1)^{n+1}}{\pi}\sum_{k=0}^{[\frac{n-1}{2}]} \frac{\Gamma(n-k-1/2)(z/2)^{-n+2k+1}}{\Gamma(k+3/2)}\mathbf{H}_{-n}.

Struve functions of order n+1/2 (n an integer) can be expressed in terms of elementary functions. In particular if n is a non-negative integer then

\mathbf{H}_{-n-1/2}(z) = (-1)^nJ_{n+1/2}(z)

where the right hand side is a spherical Bessel function.

Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function 1F2 (which is not the Gauss hypergeometric function 2F1) :

\mathbf{H}_{\alpha}(z) = \frac{(z/2)^{\alpha+1/2}}{\sqrt{2\pi}\Gamma(\alpha+3/2)}{}_1F_2(1,3/2,\alpha+3/2,-z^2/4).

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the …   Wikipedia

  • Anger function — In mathematics, the Anger function, introduced in harv|Anger|1855, is a function defined by: mathbf{J} u(z)=frac{1}{pi} int 0^pi cos ( u heta zsin heta) ,d heta.and is closely related to Bessel functions.The Weber function, introduced by… …   Wikipedia

  • Lommel function — The Lommel differential equation is an inhomogeneous form of the Bessel differential equation:z^2 frac{d^2y}{dz^2} + z frac{dy}{dz} + (z^2 u^2)y = z^{mu+1}.Two solutions are given by the Lommel functions s mu;, nu;( z ) and S mu;, nu;( z ),… …   Wikipedia

  • Weber function — In mathematics, Weber function can refer to several different families of functions, mostly named after the physicist H. F. Weber. *Weber s modular function (named after the mathematician H. M. Weber). *Weber function is sometimes used as a name… …   Wikipedia

  • List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Функция Струве — Функция Струве  неэлементарная функция, которая является частным решением неоднородного уравнения Бесселя: Интегральное выражение функции Струве: Разложение в ряд …   Википедия

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

  • Vega — Starbox begin name=Vega Starbox image caption = Location of Vega in the constellation Lyra. Starbox observe epoch=J2000.0 constell=Lyra ra=RA|18|36|56.3364cite web author=Staff date=October 30, 2007 url=http://simbad.u strasbg.fr/simbad/sim… …   Wikipedia

  • Queen's Medal — Die Royal Medal, auch The Queen s Medal genannt, ist eine von der Royal Society verliehene Auszeichnung für Wissenschaftler, die innerhalb des Commonwealth of Nations besonders wichtige Beiträge zur Weiterentwicklung der Wissenschaften geleistet… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”