Anger function

Anger function

In mathematics, the Anger function, introduced in harv|Anger|1855, is a function defined by

: mathbf{J}_ u(z)=frac{1}{pi} int_0^pi cos ( u heta-zsin heta) ,d heta.

and is closely related to Bessel functions.

The Weber function, introduced by harvs|txt|authorlink=Heinrich Friedrich Weber|first=H. F.|last=Weber|year=1879, is a closely related function defined by

: mathbf{E}_ u(z)=frac{1}{pi} int_0^pi sin ( u heta-zsin heta) ,d heta.

and is closely related to Bessel functions of the second kind.

Relation between Weber and Anger functions

The Anger and Weber functions are related by

:sin(pi u)mathbf{J}_ u(z) = cos(pi u)mathbf{E}_ u(z)-mathbf{E}_{- u}(z)

:-sin(pi u)mathbf{E}_ u(z) = cos(pi u)mathbf{J}_ u(z)-mathbf{J}_{- u}(z)

so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions "J"ν, and Weber functions can be expressed as finite linear combinations of Struve functions.

Differential equations

The Anger and Weber functions are solutions of inhomogenous forms of Bessel's equation z^2y^{primeprime} + zy^prime +(z^2- u^2)y = 0. More precisely, the Anger functions satisfy the equation

:z^2y^{primeprime} + zy^prime +(z^2- u^2)y = (z- u)sin(pi z)/pi

and the Weber functions satisfy the equation

:z^2y^{primeprime} + zy^prime +(z^2- u^2)y = -((z+ u) + (z- u)cos(pi z))/pi.

References

*AS ref|12|498
*C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig , 5 (1855) pp. 1–29
*springer|id=A/a012490|title=Anger function|first=A.P.|last= Prudnikov
*springer|id=W/w097320|title=Weber function|first=A.P.|last= Prudnikov
*G.N. Watson, "A treatise on the theory of Bessel functions" , 1–2 , Cambridge Univ. Press (1952)
*H.F. Weber, Zurich Vierteljahresschrift , 24 (1879) pp. 33–76


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Anger (disambiguation) — Anger is an emotion.Anger may also refer to: * Anger as one of the Seven deadly sins in Christian doctrinePlaces*Anger, Bavaria, town in Germany *Anger, Austria, town in Styria, AustriaPeople*Saint Eluned, alternative spelling for the name of… …   Wikipedia

  • Lommel function — The Lommel differential equation is an inhomogeneous form of the Bessel differential equation:z^2 frac{d^2y}{dz^2} + z frac{dy}{dz} + (z^2 u^2)y = z^{mu+1}.Two solutions are given by the Lommel functions s mu;, nu;( z ) and S mu;, nu;( z ),… …   Wikipedia

  • Weber function — In mathematics, Weber function can refer to several different families of functions, mostly named after the physicist H. F. Weber. *Weber s modular function (named after the mathematician H. M. Weber). *Weber function is sometimes used as a name… …   Wikipedia

  • Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the …   Wikipedia

  • Jacobi-Anger identity — The Jacobi Anger identity is an expansion of exponentials of trigonometric functions in the basis of their harmonics. It is useful in physics (for example, to convert between plane waves and cylindrical waves), and in signal processing (to… …   Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Eugen von Lommel — Pour les articles homonymes, voir Lommel (homonymie). Eugen von Lommel Eugen Cornelius Joseph von …   Wikipédia en Français

  • Функция Ангера — неэлементарная функция, которая является частным решением неоднородного уравнения Бесселя: Интегральное выражение функции Ангера: где функция Бурже. При целых функция Ангера совпадает с функцией Бе …   Википедия

  • emotion — emotionable, adj. emotionless, adj. /i moh sheuhn/, n. 1. an affective state of consciousness in which joy, sorrow, fear, hate, or the like, is experienced, as distinguished from cognitive and volitional states of consciousness. 2. any of the… …   Universalium

  • Aristotle: Ethics and politics — Roger Crisp ETHICS BACKGROUND AND METHOD Aristotle wrote no books on ethics. Rather, he gave lectures, the notes for which subsequently were turned by others into two books, the Nicomachean Ethics (NE) and the Eudemian Ethics (EE). There is much… …   History of philosophy

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”