- Lommel function
The Lommel differential equation is an inhomogeneous form of the
Bessel differential equation :Two solutions are given by the Lommel functions "s"μ,ν("z") and "S"μ,ν("z"), introduced by harvs|txt|authorlink=Eugen von Lommel|first=Eugen von|last= Lommel|year=1880,
: :
where "J"ν("z") is a
Bessel function of the first kind, and "Y"ν("z") a Bessel function of the second kind.ee also
*
Anger function
*Lommel polynomial
*Struve function
*Weber function References
*Citation | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol II | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | id=MathSciNet | id = 0058756 | year=1953
*citation|first=E.|last= Lommel|title=Ueber eine mit den Bessel'schen Functionen verwandte Function|journal= Math. Ann. |volume= 9 |year=1875|pages= 425-444
*citation|first=E.|last= Lommel|title=Zur Theorie der Bessel'schen Funktionen IV|journal= Math. Ann. |volume= 16 |year=1880|pages= 183–208
*springer|id=l/l060800|first=E.D. |last=SolomentsevExternal links
* Weisstein, Eric W. [http://mathworld.wolfram.com/LommelDifferentialEquation.html "Lommel Differential Equation."] From MathWorld--A Wolfram Web Resource.
* Weisstein, Eric W. [http://mathworld.wolfram.com/LommelFunction.html "Lommel Function."] From MathWorld--A Wolfram Web Resource.
Wikimedia Foundation. 2010.