- Artin-Zorn theorem
In
mathematics , the Artin-Zorn theorem states that any finite alternative division ring is necessarily afinite field . It generalizes theWedderburn theorem for finite associative division rings.
Wikimedia Foundation. 2010.
In
Wikimedia Foundation. 2010.
Max August Zorn — Max August Zorn, Jena, 1930 Max August Zorn (June 6, 1906 in Krefeld, Germany – March 9, 1993 in Bloomington, Indiana, United States) was a German born American mathematician. He was an algebraist, group theorist, and numerical analyst. He is… … Wikipedia
Emil Artin — Infobox Scientist name=Emil Artin birth date = March 3, 1898 birth place = Vienna death date = December 20, 1962 field = MathematicsEmil Artin (March 3, 1898, in Vienna – December 20, 1962, in Hamburg) was an Austrian mathematician. His father,… … Wikipedia
Lemme de Zorn — En mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous ensemble totalement ordonné) possède… … Wikipédia en Français
Lemme De Zorn — En mathématiques, Le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme qu un ensemble ordonné tel que toute chaîne (sous ensemble totalement ordonné) possède un… … Wikipédia en Français
Lemme de zorn — En mathématiques, Le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme qu un ensemble ordonné tel que toute chaîne (sous ensemble totalement ordonné) possède un… … Wikipédia en Français
List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A … Wikipedia
Finite field — In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field that contains only finitely many elements. Finite fields are important in number theory, algebraic geometry, Galois theory, cryptography, and… … Wikipedia
Moufang plane — In mathematics, a Moufang plane, named for Ruth Moufang, is a type of projective plane, characterised by the property that the group of automorphisms fixing all points of any given line acts transitively on the points not on the line. In other… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Split-octonion — In mathematics, the split octonions are a nonassociative extension of the quaternions (or the split quaternions). They differ from the octonions in the signature of quadratic form: the split octonions have a split signature (4,4) whereas the… … Wikipedia