Mittag-Leffler function

Mittag-Leffler function

In mathematics, the Mittag-Leffler function Eα,β is a special function, a complex function which depends on two complex parameters α and β. It may be defined by the following series when the real part of α is strictly positive:

E_{\alpha, \beta} (z) = \sum_{k=0}^\infty \frac{z^k}{\Gamma(\alpha k + \beta)}.

In this case, the series converges for all values of the argument z, so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler.

For α > 0, the Mittag-Leffler function Eα,1 is an entire function of order 1/α, and is in some sense the simplest entire function of its order.

Contents

Special cases

Exponential function:

E_{1,1}(z) = \sum_{k=0}^\infty \frac{z^k}{\Gamma (k + 1)} = \sum_{k=0}^\infty \frac{z^k}{k!} = \exp(z).

Error function:

E_{1/2,1}(z) = \exp(z^2)\operatorname{erfc}(-z).

Sum of a geometric progression:

E_{0,1}(z) = \frac{1}{1-z}.

Hyperbolic cosine:

E_{2,1}(z) = \cosh(\sqrt{z}).

Mittag-Leffler's integral representation

E_{\alpha,\beta}(z)=\frac{1}{2\pi i}\int_C \frac{t^{\alpha-\beta}e^t}{t^\alpha-z} \, dt

where the contour C starts and ends at −∞ and circles around the singularities and branch points of the integrand.

References

  • Olver, F. W. J.; Maximon, L. C. (2010), "Mittag-Leffler function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248, http://dlmf.nist.gov/10.46 
  • Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. (Mathematics in Science and Engineering, vol. 198), by Igor Podlubny. Hardcover. Publisher: Academic Press; (October 1998). ISBN 0-12-558840-2 (see Chapter 1).

External links


This article incorporates material from Mittag-Leffler function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Mittag-Leffler-Funktion — Die Mittag Leffler Funktion ist eine nach dem Mathematiker Magnus Gösta Mittag Leffler benannte mathematische Funktion, die in den Lösungen von bestimmten gebrochenen Integralgleichungen auftaucht (z. B. bei der Untersuchung von Zufallsbewegungen …   Deutsch Wikipedia

  • Mittag-Leffler star — Illustration of the Mittag Leffler star (the region bounded by the blue contour). The original disk U is centered at a. In complex analysis, a branch of mathematics, the Mittag Leffler star of a complex analytic function is a set in the… …   Wikipedia

  • Mittag-Leffler's theorem — In complex analysis, Mittag Leffler s theorem concerns the existence of meromorphic functions with prescribed poles. It is sister to the Weierstrass factorization theorem, which asserts existence of holomorphic functions with prescribed zeros. It …   Wikipedia

  • Mittag-Leffler, Magnus Gösta — ▪ Swedish mathematician born March 16, 1846, Stockholm, Sweden died July 7, 1927, Stockholm  Swedish mathematician who founded the international mathematical journal Acta Mathematica and whose contributions to mathematical research helped advance …   Universalium

  • Gösta Mittag-Leffler — Born 16 March 1846 …   Wikipedia

  • Fonction de Mittag-Leffler — En mathématiques, la fonction de Mittag Leffler, notée Eαβ qui tient son nom du mathématicien Gösta Mittag Leffler, est une fonction spéciale, c’est à dire qui ne peut être calculée à partir d équations rationnelles, qui s applique dans le plan… …   Wikipédia en Français

  • Error function — Plot of the error function In mathematics, the error function (also called the Gauss error function) is a special function (non elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations. It is defined …   Wikipedia

  • Entire function — In complex analysis, an entire function, also called an integral function, is a complex valued function that is holomorphic over the whole complex plane. Typical examples of entire functions are the polynomials and the exponential function, and… …   Wikipedia

  • Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”