Mittag-Leffler star

Mittag-Leffler star
Illustration of the Mittag-Leffler star (the region bounded by the blue contour). The original disk U is centered at a.

In complex analysis, a branch of mathematics, the Mittag-Leffler star of a complex-analytic function is a set in the complex plane obtained by attempting to extend that function along rays emanating from a given point. This concept is named after Gösta Mittag-Leffler.

Contents

Definition and elementary properties

Formally, the Mittag-Leffler star of a complex-analytic function ƒ defined on an open disk U in the complex plane centered at a point a is the set of all points z in the complex plane such that ƒ can be continued analytically along the line segment joining a and z (see analytic continuation along a curve).

It follows from the definition that the Mittag-Leffler star is an open star-convex set (with respect to the point a) and that it contains the disk U. Moreover, ƒ admits a single-valued analytic continuation to the Mittag-Leffler star.

Examples

  • The Mittag-Leffler star of the complex exponential function defined in a neighborhood of a = 0 is the entire complex plane.
  • The Mittag-Leffler star of the complex logarithm defined in the neighborhood of point a = 1 is the entire complex plane without the origin and the negative real axis. In general, given the complex logarithm defined in the neighborhood of a point a ≠ 0 in the complex plane, this function can be extended all the way to infinity on any ray starting at a, except on the ray which goes from a to the origin, one cannot extend the complex logarithm beyond the origin along that ray.
  • Any open star-convex set is the Mittag-Leffler star of some complex-analytic function, since any open set in the complex plane is a domain of holomorphy.

Uses

An illustration of the regions of convergence of the Mittag-Leffler expansion and the Taylor series expansion around a (the regions bounded by the blue curve and red circle respectively).

Any complex-analytic function ƒ defined around a point a in the complex plane can be expanded in a series of polynomials which is convergent in the entire Mittag-Leffler star of ƒ at a. Each polynomial in this series is a linear combination of the first several terms in the Taylor series expansion of ƒ around a.

Such a series expansion of ƒ, called the Mittag-Leffler expansion, is convergent in a larger set than the Taylor series expansion of ƒ at  a. Indeed, the largest open set on which the latter series is convergent is a disk centered at a and contained within the Mittag-Leffler star of ƒ at a

References

  • Shenitzer, Abe; Stillwell, John; editors (2002). Mathematical evolutions. Washington, DC: Mathematical Association of America. pp. page 32. ISBN 0883855364. 
  • Korevaar, Jacob (2004). Tauberian theory: a century of developments. Berlin; New York: Springer. ISBN 354021058X. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Gösta Mittag-Leffler — Born 16 March 1846 …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Divergent series — In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a limit. If a series converges, the individual terms of the series must approach… …   Wikipedia

  • Divergent geometric series — In mathematics, an infinite geometric series of the form is divergent if and only if | r | ≥ 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that… …   Wikipedia

  • Prolongement analytique — En analyse complexe, la théorie du prolongement analytique détaille l ensemble des propriétés et techniques concernant le prolongement des fonctions holomorphes (ou analytiques). Elle considère d abord la question du prolongement dans le plan… …   Wikipédia en Français

  • Analytic continuation — In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where …   Wikipedia

  • Extensión analítica — En análisis complejo que es una rama de las matemáticas, una extensión analítica (o continuación analítica) es una técnica para extender el dominio de definición de una dada función analítica. Una extensión analítica por lo general tiene éxito en …   Wikipedia Español

  • Georg Cantor — Infobox Scientist name = Georg Ferdinand Ludwig Cantor image width=225px caption = birth date = birth date|1845|3|3 birth place = Saint Petersburg, Russia death date = death date and age|1918|1|6|1845|3|3 death place = Halle, Germany residence =… …   Wikipedia

  • Nobel Prize controversies — Nobel Prize Awarded for Outstanding contributions in physics, chemistry, literature, peace, and physiology or medicine. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, identified with the Nobel Prize, is awarded for… …   Wikipedia

  • Degasperis-Procesi equation — In mathematical physics, the Degasperis Procesi equation: displaystyle u t u {xxt} + 2kappa u x + 4u u x = 3 u x u {xx} + u u {xxx}is one of only two exactly solvable equations in the following family of third order, non linear, dispersive… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”