Divergent geometric series

Divergent geometric series

In mathematics, an infinite geometric series of the form

\sum_{k=0}^\infty ar^k = a + ar + ar^2 + ar^3 +\cdots

is divergent if and only if | r | ≥ 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that agrees with the formula for the convergent case

\sum_{k=0}^\infty ar^k = \frac{a}{1-r}.

This is true of any summation method that possesses the properties of regularity, linearity, and stability.[disambiguation needed ]

Contents

Examples

In increasing order of difficulty to sum:

Motivation for study

It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method sums Σzn to 1/(1 - z) for all z in a subset S of the complex plane, given certain restrictions on S, then the method also gives the analytic continuation of any other function f(z) = Σanzn on the intersection of S with the Mittag-Leffler star for f.[1]

Summability by region

Open unit disk

Ordinary summation succeeds only for common ratios |z| < 1.

Closed unit disk

Larger disks

Half-plane

The series is Borel summable for every z with real part < 1. Any such series is also summable by the generalized Euler method (E, a) for appropriate a.

Shadowed plane

Certain moment constant methods besides Borel summation can sum the geometric series on the entire Mittag-Leffler star of the function 1/(1 − z), that is, for all z except the ray z ≥ 1.[2]

Everywhere

Notes

  1. ^ Korevaar p.288
  2. ^ Moroz p.21

References

  • Korevaar, Jacob (2004). Tauberian Theory: A Century of Developments. Springer. ISBN 3-540-21058-X. 
  • Moroz, Alexander (1991). "Quantum Field Theory as a Problem of Resummation". arXiv:hep-th/9206074. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Geometric series — In mathematics, a geometric series is a series with a constant ratio between successive terms. For example, the series:frac{1}{2} ,+, frac{1}{4} ,+, frac{1}{8} ,+, frac{1}{16} ,+, cdotsis geometric, because each term is equal to half of the… …   Wikipedia

  • Series (mathematics) — A series is the sum of the terms of a sequence. Finite sequences and series have defined first and last terms, whereas infinite sequences and series continue indefinitely.[1] In mathematics, given an infinite sequence of numbers { an } …   Wikipedia

  • Divergent series — In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a limit. If a series converges, the individual terms of the series must approach… …   Wikipedia

  • series — n. sequence (math.) 1) an alternating; convergent; divergent; geometric; harmonic; infinite series succession 2) an unbroken series cycle of programs, publications 3) a miniseries; TV series * * * [ sɪ(ə)riːz] TV series convergent divergent… …   Combinatory dictionary

  • Occurrences of Grandi's series — Main article: Grandi s series Contents 1 Parables 2 Numerical series 3 Power series 4 Fourier series …   Wikipedia

  • Grandi's series — The infinite series 1 − 1 + 1 − 1 + hellip;or:sum {n=0}^{infin} ( 1)^nis sometimes called Grandi s series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent… …   Wikipedia

  • History of Grandi's series — Geometry and infinite zerosGrandiGuido Grandi (1671 – 1742) reportedly provided a simplistic account of the series in 1703. He noticed that inserting parentheses into nowrap|1=1 − 1 + 1 − 1 + · · · produced varying results: either:(1 1) + (1 1) + …   Wikipedia

  • Convergent series — redirects here. For the short story collection, see Convergent Series (short story collection). In mathematics, a series is the sum of the terms of a sequence of numbers. Given a sequence , the nth partial sum Sn is the sum of the first n terms… …   Wikipedia

  • List of real analysis topics — This is a list of articles that are considered real analysis topics. Contents 1 General topics 1.1 Limits 1.2 Sequences and Series 1.2.1 Summation Methods …   Wikipedia

  • 1 + 2 + 4 + 8 + · · · — In mathematics, 1 + 2 + 4 + 8 + hellip; is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. :sum {i=0}^{n} 2^i.As a series of real numbers… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”