Receptor theory

Receptor theory

Receptor theory is the application of receptor models to explain drug behaviour. [cite journal |author=Kenakin T |title=What systems can and can't do |journal=Br. J. Pharmacol. |volume=153 |issue=5 |pages=841–3 |year=2008 |pmid=18204481 |doi=10.1038/sj.bjp.0707677 |url=] Pharmacological receptor models had preceded accurate knowledge of receptors for many years. T. Kenakin (2004) Principles: Receptor theory in pharmacology "Trends Pharmacol Sci" Vol 25 No.4 ] John Newport Langley and Paul Ehrlich introduced the concept of a receptor that would mediate drug action at the beginning of the 20th century. A J Clark was the first to quantify drug induced biological responses and propose a model to explain drug mediated receptor activation. So far, nearly all of the quantitative theoretical modelling of receptor function has centred on ligand-gated ion channels and GPCRs.cite journal |author=Rang HP |title=The receptor concept: pharmacology's big idea |journal=Br. J. Pharmacol. |volume=147 Suppl 1 |issue= |pages=S9–16 |year=2006 |pmid=16402126 |doi=10.1038/sj.bjp.0706457]

History

The receptor concept

In 1901, Langley challenged the dominant hypothesis that drugs act at nerve endings by demonstrating that nicotine acted at sympathetic ganglia even after the degeneration of the severed preganglionic nerve endings. [Langley J. On the stimulation and paralysis of nerve cells and of nerve-endings. Part 1. "J Physiol" 1901 October 16; 27(3): 224–236. ] In 1905 he introduced the concept of a receptive substance on the surface of skeletal muscle that mediated the action of a drug. It also postulated that these receptive substances were different in different species (citing the fact that nicotine induced muscle paralysis in mammals was absent in crayfish). [J. N. Langley. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curare. "J Physiol" 1905; 33: 374–413. ] Around the same time Ehrlich was trying to understand the basis of selectivity of agents.cite journal |author=Limbird LE |title=The receptor concept: a continuing evolution |journal=Mol. Interv. |volume=4 |issue=6 |pages=326–36 |year=2004 |pmid=15616162 |doi=10.1124/mi.4.6.6] He theoreticised that selectivity was the basis of a preferential distribution of lead and dyes in different body tissues. However, he later modified the theory in order to explain immune reactions and the selectivity of the immune response. Thinking that selectivity was derived from interaction with the tissues themselves Ehrlich envisaged molecules extending from cells that the body could use to distinguish and mount an immune response to foreign objects. However it was only when Ahlquist showed the differential action of adrenaline demonstrating its effects on two distinct receptor populations did the theory of receptor-mediated drug interactions gain acceptance. [ R.P. Ahlquist. (1948) A study of the adrenotrophic receptors. "Am J Physiol" 155, 586-600] [L.E. Limbird (2005) Cell Surface Receptors: A Short Course on Theory and Methods. 3rd Edition "Springer" ISBN 0387230696]

Nature of Receptor-Drug interactions

Receptor occupancy model

The receptor occupancy model which describe agonist and competitive antagonists were built on the work of Langley, Hill and Clark. The occupancy model was the first model put forward by Clark to explain the activity of drugs at receptors quantified the relationship between drug concentration and observed effect. It is based on mass-action kinetics and attempts to link the action of a drug the proportion of receptors occupied by that drug at equilibrium.cite journal |author=Christopoulos A, El-Fakahany EE |title=Qualitative and quantitative assessment of relative agonist efficacy |journal=Biochem. Pharmacol. |volume=58 |issue=5 |pages=735–48 |year=1999 |pmid=10449182 |doi=] [E.M Ross, and T.P. Kenakin. (2001) Pharmacodynamics. Mechanisms of drug action and the relationship between drug concentration and effect. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, Vol. Tenth. J.G. Hardman & L.E. Limbird, Eds. McGraw-Hill. New York.] In particular that the magnitude of the response is directly proportional to the amount of drug bound and that the maximum response would be elicited once all receptors were occupied at equilibrium. He applied mathematical approaches used in enzyme kinetics systematically to the effects of chemicals on tissues.He showed that for many drugs the relationship between drug concentration and biological effect corresponded to a hyperbolic curve, similar to that representing the adsorption of a gas onto a metal surface [cite journal |author=Quirke V |title=Putting theory into practice: James Black, receptor theory and the development of the beta-blockers at ICI, 1958-1978 |journal=Med Hist |volume=50 |issue=1 |pages=69–92 |year=2006 |pmid=16502872 |doi=] and fitted the Hill–Langmuir equation. Clark, together with Gaddum, was the first to introduce the the log concentration–effect curve and described the now-familiar 'parallel shift' of the log concentration–effect curve produced by a competitive antagonist. Attempts to separate the binding phenomenon and activation phenomenon were made by Ariens in 1954 and by Stephenson in 1956 to account for the intrinsic activity (efficacy) of a drug (that is, its ability to induce an effect after binding). [cite journal |author=Maehle AH, Prüll CR, Halliwell RF |title=The emergence of the drug receptor theory |journal=Nature reviews. Drug discovery |volume=1 |issue=8 |pages=637–41 |year=2002 |pmid=12402503 |doi=] Classic occupational models of receptor activation failed to provide evidence to directly support the idea that receptor occupancy follows a langmuir curve as the model assumed leading to the development of alternative models to explain drug behaviour.

Competitive inhibition models

The development of the classic theory of drug antagonism by Gaddum, Schild and Arunlakshana built on the work of Langley, Hill and Clark.D. Colquhoun, The relation between classical and cooperative models for drug action. In: H.P. Rang, Editor, Drug Receptors, Macmillan Press (1973), pp. 149–182. http://www.ucl.ac.uk/Pharmacology/dc-bits/colquhoun-1973.pdf] Gaddum described a model for the competitive binding of two ligands to the same receptor in short communication to the Physiological Society in 1937. The description referred only to binding, it was not immediately useful for the analysis of experimental measurements of the effects of antagonists on the response to agonists. [cite journal |author=Colquhoun D |title=The quantitative analysis of drug-receptor interactions: a short history |journal=Trends Pharmacol. Sci. |volume=27 |issue=3 |pages=149–57 |year=2006 |pmid=16483674 |doi=10.1016/j.tips.2006.01.008] It was Schild who made measurement of the equilibrium constant for the binding of an antagonist possible he developed the Schild equation to determine a dose ratio a measure of the potency of a drug. In Schild regression the change in the dose ratio, the ratio of the EC50 of an agonist alone compared to the EC50 in the presence of a competitive antagonist as determined on a dose response curve used to determine the affinity of an antagonist for its receptor.

Agonist models

The flaw in Clarks receptor-occupancy model was that it was insufficient to explain the concept of partial agonist lead to the development of agonist models of drug action by Ariens in 1954 and by Stephenson in 1956 to account for the intrinsic activity (efficacy) of a drug (that is, its ability to induce an effect after binding). [cite journal |author=Maehle AH, Prüll CR, Halliwell RF |title=The emergence of the drug receptor theory |journal=Nature reviews. Drug discovery |volume=1 |issue=8 |pages=637–41 |year=2002 |pmid=12402503 |doi=]

Two state receptor theory

The two-state model is a simple linear model to describe the interaction between a ligand and its receptor but also the active receptor (R*).cite journal |author=Bridges TM, Lindsley CW |title=G-Protein-Coupled Receptors: From Classical Modes of Modulation to Allosteric Mechanisms |journal=ACS Chem. Biol. |volume= |issue= |pages= |year=2008 |month=July |pmid=18652471 |doi=10.1021/cb800116f |url=] The model uses equilibrium dissociation constant to describe the interaction between ligand and receptor. It proposes that ligand binding results in a change in receptor state from an inactive to an active state based on the receptor's conformation. A receptor in its active state will ultimately elite its biological response. It was first described by Black and Leff in 1983 is an alternative model of receptor activation. [ J.W. Black and P. Leff. (1983) Operational Models of Pharmacological Agonism. In: "Proc. R. Soc. London Ser." B 220, pp. 141–162.] Similar to the receptor occupancy model the theory originated from earlier work by del Castillo & Katz on observations relating to ligand-gated ion channels.In this model agonists and inverse agonists are thought to have selective binding affinity for the pre-existing resting and active states [cite journal |author=Leff P |title=The two-state model of receptor activation |journal=Trends Pharmacol. Sci. |volume=16 |issue=3 |pages=89–97 |year=1995 |pmid=7540781 |doi=] or can induce a conformational change to the a different receptor state. Whereas antagonists have no preference in their affinity for a receptor state. [cite journal |author=Giraldo J |title=Agonist induction, conformational selection, and mutant receptors |journal=FEBS Lett. |volume=556 |issue=1-3 |pages=13–8 |year=2004 |pmid=14706818 |doi=] [cite journal |author=Vauquelin G, Van Liefde I |title=G protein-coupled receptors: a count of 1001 conformations |journal=Fundamental & clinical pharmacology |volume=19 |issue=1 |pages=45–56 |year=2005 |pmid=15660959 |doi=10.1111/j.1472-8206.2005.00319.x] The fact that receptor conformation (state) would effect binding affinity of a ligand was used to explain a mechanism of partial agonism of receptors by del Castillo & Katz in 1957 was based on their work on the action of acetylcholine at the motor endplate build on similar work by Wyman & Allen in 1951 on conformational-induced changes in hemoglobin's oxygen binding affinity occurring as a result of oxygen binding. cite journal |author=Colquhoun D |title=Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors |journal=Br. J. Pharmacol. |volume=125 |issue=5 |pages=924–47 |year=1998 |pmid=9846630 |doi= |url=] The del Castillo-Katz mechanism divorces the binding step from the receptor activation step mediated by receptor activation by partial agonists describing them as two independent events.

Ternary complex model

The original Ternary complex model was used to describe ligand, receptor, and G-proteininteractions uses equilibrium dissociation constants for the interactions between the receptor and each ligand (Ka for ligand A; Kb for ligand B), as well as a cooperativityfactor (α) that denotes the mutual effect of the two ligands on each other’s affinity for the receptor. An α < 1.0 refers to positive cooperativity, an α > 1.0 refers to negative cooperativity, and an α = 1.0 means that binding of either ligand to the receptor does not alter the affinity of the other ligand for the receptor (i.e., a neutral modulator). Further, the α parameter can beadded as a subtle but highly useful extension to the ATCM in order to include effects of an allosteric modulator on the efficacy (as distinct from the affinity) of another ligand that binds the receptor, such as the orthosteric agonist. Interestingly, some ligands can reduce the efficacy but increase the affinity of the orthosteric agonist for the receptor.

Although it is seductive to assume that the proportional amount of an active receptor state should correlate with the biological response, the experimental evidence for receptor overexpression and spare receptors suggests that the calculation of the net change in the active receptor state is a much better measure for response than is the fractional or proportional change. This is demonstrated by the effects of agonist/ antagonist combinations on the desensitization of receptors [http://www.bio-balance.com/ijp.pdf] . This is also demonstrated by receptors that are activated by overexpression since this requires a change between R and R* that is difficult to understand in terms of a proportional rather than a net change -see links: [http://www.bio-balance.com/ijp.pdf] , [http://www.bio-balance.com/Graphics.htm] and for the molecular model that fits with the mathematical model [http://www.bio-balance.com/JMGM_article.pdf] .

Postulates of receptor theory

*Receptors must possess structural and steric specificity.
*Receptors are saturable and finite (limited number of binding sites)
*Receptors must possess high affinity for its endogenous ligand at physiological concentrations
*Once the endogenous ligand binds to the receptor, some early recognizable chemical event must occur

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Receptor antagonist — This article is about the biochemistry term. For other uses, see Antagonist (disambiguation). Antagonists will block the binding of an agonist at a receptor molecule, inhibiting the signal produced by a receptor agonist coupling. A receptor… …   Wikipedia

  • Receptor (biochemistry) — For other uses, see Receptor (disambiguation). In biochemistry, a receptor is a molecule found on the surface of a cell, which receives specific chemical signals from neighbouring cells or the wider environment within an organism. These signals… …   Wikipedia

  • theory — A reasoned explanation of known facts or phenomena that serves as a basis of investigation by which to seek the truth. SEE ALSO: hypothesis, postulate. [G. theoria, a beholding, speculation, t., fr. theoros, a beholder] adsorption t. of narcosis… …   Medical dictionary

  • Theory of camouflage — The theoretical basis for camouflage is the underlying methodology used in by camouflage, whether natural or man made. The definition of camouflage involves concealment and obscurity , whether applied to the natural coloration of animals, or the… …   Wikipedia

  • Adrenergic receptor — Epinephrine Norepinephrine The adrenergic receptors (or adrenoceptors) are a class of met …   Wikipedia

  • Sensory receptor — In a sensory system, a sensory receptor is a structure that recognizes a stimulus in the internal or external environment of an organism. In response to stimuli the sensory receptor initiates sensory transduction by creating graded potentials or… …   Wikipedia

  • Vibration theory of olfaction — The Vibration theory of smell proposes that a molecule s smell character is due to its vibrational frequency in the infrared range. The theory is opposed to the more widely accepted shape theory of olfaction, which proposes that a molecule s… …   Wikipedia

  • Shape theory of olfaction — The Shape theory of smell states that a molecule s particular smell is due to a lock and key mechanism by which a scent molecule fits into olfactory receptors in the nasal epithelium. HistoryIn 1949, R.W. Moncrieff published an article in… …   Wikipedia

  • Attachment theory — …   Wikipedia

  • NMDA receptor — NMDA Glutamic acid …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”