Gram staining

Gram staining

Gram staining (or Gram's method) is an empirical method of differentiating bacterial species into two large groups (Gram-positive and Gram-negative) based on the chemical and physical properties of their cell walls.cite book | last = Bergey | first = David H. | coauthors = John G. Holt; Noel R. Krieg; Peter H.A. Sneath | title = Bergey's Manual of Determinative Bacteriology | edition = 9th ed. | publisher = Lippincott Williams & Wilkins | year = 1994 | id = ISBN 0-683-00603-7 ]

The method is named after its inventor, the Danish scientist Hans Christian Gram (1853 – 1938), who developed the technique in 1884 to discriminate between pneumococci and "Klebsiella pneumoniae" bacteria.cite journal | authorlink = Hans Christian Gram | last = Gram | first = HC | title = Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten | journal = Fortschritte der Medizin | year = 1884 | volume = 2 | pages = 185–89 ]

Uses

It is used to differentiate bacterial species into two large groups (Gram-positive and Gram-negative) based on the chemical and physical properties of their cell walls. Gram staining is not used to classify archaea, since these microorganisms give very variable responses that do not follow their phylogenetic groups [cite journal |author=Beveridge TJ |title=Use of the gram stain in microbiology |journal=Biotech Histochem |volume=76 |issue=3 |pages=111–8 |year=2001 |pmid=11475313 |doi=10.1080/714028139] .

Research

Gram staining is a common procedure in the traditional bacteriological laboratory.cite book | author = Ryan KJ; Ray CG (editors) | title = Sherris Medical Microbiology | pages = 232 – 3 |edition = 4th ed. | publisher = McGraw Hill | year = 2004 | id = ISBN 0838585299 ] The technique is used as a tool for the differentiation of Gram-positive and Gram-negative bacteria, as a first step to determine the identity of a particular bacterial sample.cite book | last = Madigan | first = MT | coauthors = Martinko J; Parker J | title = Brock Biology of Microorganisms | edition = 10th Edition | publisher = Lippincott Williams & Wilkins | year = 2004 | id = ISBN 0-13-066271-2 ]

The Gram stain is not an infallible tool for diagnosis, identification, or phylogeny, however. It is of extremely limited use in environmental microbiology, and has been largely superseded by molecular techniques even in the medical microbiology lab. Given that some organisms are Gram-variable (i.e. they may stain either negative or positive), and that some organisms are not susceptible to either stain used by the Gram technique, its true utility to researchers should be considered limited and non-specific. In a modern environmental or molecular microbiology lab, most identification is done using genetic sequences and other molecular techniques, which are far more specific and information-rich than differential staining.

Medical

Gram stains are performed on body fluid or biopsy when infection is suspected. It yields results much more quickly than culture, and is especially important when infection would make an important difference in the patient's treatment and prognosis; examples are cerebrospinal fluid for meningitis and synovial fluid for septic arthritis.cite journal |author=Søgaard M, Nørgaard M, Schønheyder H |title=First notification of positive blood cultures: high accuracy of the Gram stain report "(Epub ahead of publication)" |journal=J Clin Microbiol |volume= 45|issue= |pages= 1113|year= 2007 |pmid=17301283 |doi=10.1128/JCM.02523-06]

As a general rule (which has exceptions), Gram-negative bacteria are more pathogenic due to their outer membrane structure. The presence of a capsule will often increase the virulence of a pathogen. Additionally, Gram-negative bacteria have lipopolysaccharide in their outer membrane, an endotoxin which increases the severity of inflammation. This inflammation may be so severe that septic shock may occur. Gram-positive infections are generally less severe because the human body does not contain peptidoglycan; in fact, humans produce an enzyme (lysozyme) that attacks the open peptidoglycan layer of Gram-positive bacteria. Gram-positive bacteria are also frequently much more susceptible to beta-lactam antibiotics, such as penicillin.

Exceptions to the rule include branching and filamentous Gram-positive bacteria such as "Mycobacterium tuberculosis" and other agents of tuberculosis, or "Nocardia" species, the agents of nocardiosis and some types of actinomycetoma. These organisms present unique problems in diagnosis and treatment, and special stains such as the Ziehl-Neelsen stain and the Kinyoun stain are used in their laboratory workup.

taining mechanism

Gram-positive bacteria have a thick mesh-like cell wall made of peptidoglycan (50-90% of cell wall), which stain purple and Gram-negative bacteria have a thinner layer (10% of cell wall), which stain pink. Gram-negative bacteria also have an additional outer membrane which contains lipids, and is separated from the cell wall by the periplasmic space. There are four basic steps of the Gram stain, which include applying a primary stain (crystal violet) to a heat-fixed smear of a bacterial culture, followed by the addition of a "mordant" (Gram's iodine), rapid decolorization with alcohol or acetone, and "counterstaining" with safranin or basic fuchsin.

Crystal violet (CV) dissociates in aqueous solutions into CV+ and chloride (Cl) ions. These ions penetrate through the cell wall and cell membrane of both Gram-positive and Gram-negative cells. The CV+ ion interacts with negatively charged components of bacterial cells and stains the cells purple. Iodine (I or I3) interacts with CV+ and forms large complexes of crystal violet and iodine (CV – I) within the inner and outer layers of the cell. When a decolorizer such as alcohol or acetone is added, it interacts with the lipids of the cell membrane. A Gram-negative cell will lose its outer membrane and the peptidoglycan layer is left exposed. The CV – I complexes are washed from the Gram-negative cell along with the outer membrane. In contrast, a Gram-positive cell becomes dehydrated from an ethanol treatment. The large CV – I complexes become trapped within the Gram-positive cell due to the multilayered nature of its peptidoglycan. The decolorization step is critical and must be timed correctly; the crystal violet stain will be removed from both Gram-positive and negative cells if the decolorizing agent is left on too long (a matter of seconds).

After decolorization, the Gram-positive cell remains purple and the Gram-negative cell loses its purple color. Counterstain, which is usually positively-charged safranin or basic fuchsin, is applied last to give decolorized Gram-negative bacteria a pink or red color.cite journal
last = Beveridge
first = T.J.
authorlink =
coauthors = Davies, J.A.
title = Cellular responses of "Bacillus subtilis" and "Escherichia coli" to the Gram stain
journal = J. Bacteriol.
volume = 156
issue = 2
pages = 846–858
date =
publisher =
url = http://jb.asm.org/cgi/reprint/156/2/846.pdf
format = PDF
pmid = 6195148
accessdate = 2007-02-17
] cite journal
last = Davies
first = J.A.
authorlink =
coauthors = G.K. Anderson, T.J. Beveridge, H.C. Clark
title = Chemical mechanism of the Gram stain and synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain
journal = J. Bacteriol.
volume = 156
issue = 2
pages = 837–845
date =
publisher =
url = http://jb.asm.org/cgi/reprint/156/2/837.pdf
format = PDF
pmid = 6195147
accessdate = 2007-02-17
]

Some bacteria, after staining with the Gram stain, yield a "Gram-variable" pattern: a mix of pink and purple cells are seen. The genera "Actinomyces", "Arthobacter", "Corynebacterium", "Mycobacterium", and "Propionibacterium" have cell walls particularly sensitive to breakage during cell division, resulting in Gram-negative staining of these Gram-positive cells. In cultures of "Bacillus", "Butyrivibrio", and "Clostridium" a decrease in peptidoglycan thickness during growth coincides with an increase in the number of cells that stain Gram-negativecite journal
last = Beveridge
first = T.J.
authorlink =
coauthors =
title = Mechanism of gram variability in select bacteria
journal = J. Bacteriol.
volume = 172
issue = 3
pages = 1609–1620
date =
publisher =
url = http://jb.highwire.org/cgi/reprint/172/3/1609.pdf
format = PDF
pmid = 1689718
accessdate = 2007-02-17
] In addition, in all bacteria stained using the Gram stain, the age of the culture may influence the results of the stain.

Gram staining protocol

# Make a slide of tissue or body fluid that is to be stained. Heat the slide for few seconds until it becomes hot to the touch so that bacteria are firmly mounted to the slide.
# Add the primary stain crystal violet and wait 1 minute. Rinse gently with water. This step colors all cells violet.
# Add Gram's iodine, for 30 seconds. It is not a stain; it is a mordant. It doesn't give color directly to the bacteria but it fixes the crystal violet to the bacterial cell wall. All cells remain violet.
# Wash with ethanol and acetone, the decolorizer. If the bacteria is Gram-positive it will retain the primary stain. If it is Gram-negative it will lose the primary stain and appear colorless.
# Add the secondary stain, safranin, and wait 1 min, then wash with water for a maximum of 5 seconds. If the bacteria is Gram-positive then the cell will retain the primary stain, will not take the secondary stain, and will appear black-violet. If the bacteria is Gram-negative then the cell will lose the primary stain, take secondary stain, and will appear red-pink.

If you have trouble remembering the order just remember the mnemonic:Come In And Stain. The C is for crystal violet, I is for iodine, A is for alcohol, and S is for safranin.

"Crystal violet" is 2 g of 90% crystal violet dissolved in 20 ml of 95% ethanol.

"Gram's iodine" is 1 g of iodine, 2 g of potassium iodide, dissolved in 300 ml of distilled water.

"Decolorizer" is 50% ethyl alcohol, 50% acetone. [http://www.uphs.upenn.edu/bugdrug/antibiotic_manual/Gram1.htm ]

Variations of the method are quite common, such as gentian violet instead of crystal violet and basic fuchsin instead of safranin.

Examples

Gram-negative bacteria

The proteobacteria are a major group of Gram-negative bacteria. Other notable groups of Gram-negative bacteria include the cyanobacteria, spirochaetes, green sulfur and green non-sulfur bacteria.

These also include many medically relevant Gram-negative cocci, bacilli and many bacteria associated with nosocomial infections.

Gram-positive bacteria

In the original bacterial phyla, the Gram-positive forms made up the phylum Firmicutes, a name now used for the largest group. It includes many well-known genera such as "Bacillus", "Listeria", "Staphylococcus", "Streptococcus", "Enterococcus", and "Clostridium". It has also been expanded to include the Mollicutes, bacteria like "Mycoplasma" that lack cell walls and so cannot be stained by Gram, but are derived from such forms.

ee also

* Bacterial cell structure
* Staining (biology)

References

External links

* [http://www.tgw1916.net/movies.html Gram staining technique video]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Gram staining — A technique to distinguish between two major bacterial groups, based on whether or not their cell wall retains the Gram stain. Gram positive bacteria are stained dark purple, while Gram negative bacteria are only faintly coloured. Stain retention …   Glossary of Biotechnology

  • Gram staining — noun Grams method of distinguishing the two main groups of bacteria …   Wiktionary

  • Staining — is an auxiliary technique used in microscopy to enhance contrast in the microscopic image.In biochemistry it involves adding a class specific (DNA, proteins, lipids, carbohydrates) dye to a substrate to qualify or quantify the presence of a… …   Wikipedia

  • Gram-positive bacteria — Gram positive bacteria, stained purple, of both the bacillus (“rod shaped”) and coccus (spherical) forms.  A few Gram negative bacteria are also present, stained pink.  Numbered ticks are eleven (11) microns apart. Gram positive… …   Wikipedia

  • Gram-negative — bacteria lose the crystal violet stain (and take the color of the red counterstain) in Gram s method of staining. This is characteristic of bacteria that have a cell wall composed of a thin layer of a particular substance (called peptidoglycan).… …   Medical dictionary

  • Gram-positive — bacteria retain the color of the crystal violet stain in the Gram stain. This is characteristic of bacteria that have a cell wall composed of a thick layer of a particular substance (called peptidologlycan). The Gram positive bacteria include… …   Medical dictionary

  • Gram (disambiguation) — Gram is a unit of measurement of mass. Otherwise, gram may refer to: gram, the Greek based suffix meaning drawing or representation. Contents 1 Places 2 People …   Wikipedia

  • Gram-negative bacteria — Microscopic image of Gram negative Pseudomonas aeruginosa bacteria (pink red rods). Gram negative bacteria are bacteria that do not retain crystal violet dye in the Gram staining protocol.[1] In a Gram …   Wikipedia

  • Gram stain — The Danish bacteriologist J.M.C. Gram (1853 1938) devised a method of staining bacteria using a dye called crystal (gentian) violet. Gram s method helps distinguish between different types of bacteria. The gram staining characteristics of… …   Medical dictionary

  • Gram's method — noun a staining technique, using a sequence of crystal violet, iodine and safranine, used to differentiate bacteria into two large groups of species Syn: Gram staining …   Wiktionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”