Hörmander's condition

Hörmander's condition

In mathematics, Hörmander's condition is a property of vector fields that, if satisfied, has many useful consequences in the theory of partial and stochastic differential equations. The condition is named after the Swedish mathematician Lars Hörmander.

Definition

Given two "C"1 vector fields "V" and "W" on "d"-dimensional Euclidean space R"d", let ["V", "W"] denote their Lie bracket, another vector field defined by

: [V, W] (x) = mathrm{D} V(x) W(x) - mathrm{D} W(x) V(x),

where D"V"("x") denotes the Fréchet derivative of "V" at "x" ∈ R"d", which can be thought of as a matrix that is applied to the vector "W"("x"), and "vice versa".

Let "A"0, "A"1, ... "A""n" be vector fields on R"d". They are said to satisfy Hörmander's condition if, for every point "x" ∈ R"d", the vectors

:A_{i} (x),: [A_{j_{0 (x), A_{j_{1 (x)] ,: [A_{j_{0 (x), A_{j_{1 (x)] , A_{j_{2 (x)] ,::vdots:1 leq i leq n, 0 leq j_{0}, j_{1}, ldots, j_{n} leq n,

span R"d".

Application to the Cauchy problem

With the same notation as above, define a second-order differential operator "F" by

:F = frac1{2} sum_{i = 1}^{n} A_{i}^{2} + A_{0}.

An important problem in the theory of partial differential equations is to determine sufficient conditions on the vector fields "A""i" for the Cauchy problem

:egin{cases} dfrac{partial u}{partial t} (t, x) = F u(t, x), & t > 0, x in mathbf{R}^{d}; \ u(t, cdot) o f, & mbox{ as } t o 0; end{cases}

has a smooth fundamental solution, i.e. a real-valued function "p" (0, +∞) × R2"d" such that "p"("t", ·, ·) is smooth on R2"d" for each "t" and

:u(t, x) = int_{mathbf{R}^{d p(t, x, y) f(y) , mathrm{d} y

satisfies the Cauchy problem above. It had been known for some time that a smooth solution exists in the elliptic case, in which

:A_{i} = sum_{j = 1}^{d} a_{ji} frac{partial}{partial x_{j,

and the matrix "A" = ("a""ji"), 1 ≤ "j" ≤ "d", 1 ≤ "i" ≤ "n" is such that "AA"∗ is everywhere an invertible matrix.

The great achievement of Hörmander's 1967 paper was to show that a smooth fundamental solution exists under a considerably weaker assumption: the condition that now bears his name.

References

* cite book
last = Bell
first = Denis R.
title = The Malliavin calculus
publisher = Dover Publications Inc.
location = Mineola, NY
year = 2006
pages = pp. x+113
isbn = 0-486-44994-7
MathSciNet|id=2250060 (See the introduction)
* cite journal
last = Hörmander
first = Lars
authorlink = Lars Hörmander
title = Hypoelliptic second order differential equations
journal = Acta Math.
volume = 119
year = 1967
pages = 147–171
issn = 0001-5962
doi = 10.1007/BF02392081
MathSciNet|id=0222474


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Malliavin calculus — The Malliavin calculus, named after Paul Malliavin, is a theory of variational stochastic calculus. In other words it provides the mechanics to compute derivatives of random variables. The original motivation for the development of the subject… …   Wikipedia

  • FONCTIONS ANALYTIQUES - Fonctions de plusieurs variables complexes — La notion de fonction holomorphe de plusieurs variables complexes est aussi ancienne que l’analyse complexe. Les problèmes les plus simples, qui font intervenir des relations algébriques ou analytiques ou des équations différentielles,… …   Encyclopédie Universelle

  • Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

  • DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Théorie linéaire — Il existe une théorie mathématique assez bien constituée des équations aux dérivées partielles linéaires, dont nous allons essayer de donner une idée. En contraste, les équations non linéaires présentent un foisonnement de problèmes et de… …   Encyclopédie Universelle

  • Distribution (mathematics) — This article is about generalized functions in mathematical analysis. For the probability meaning, see Probability distribution. For other uses, see Distribution (disambiguation). In mathematical analysis, distributions (or generalized functions) …   Wikipedia

  • Théorème de Paley-Wiener — En mathématiques, on appelle théorème de Paley Wiener tout théorème qui relie les propriétés de décroissance à l infini d une fonction ou d une distribution avec l analyticité de sa transformée de Fourier. Ce théorème a été ainsi nommé en hommage …   Wikipédia en Français

  • Convolution — For the usage in formal language theory, see Convolution (computer science). Convolution of two square pulses: the resulting waveform is a triangular pulse. One of the functions (in this case g) is first reflected about τ = 0 and then offset by t …   Wikipedia

  • FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… …   Encyclopédie Universelle

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”