Countable chain condition

Countable chain condition

In order theory, a partially ordered set X is said to satisfy the countable chain condition, or to be ccc, if every strong antichain in X is countable. There are really two conditions: the upwards and downwards countable chain conditions. These are not equivalent. We adopt the convention the countable chain condition means the downwards countable chain condition, in other words no two elements have a common lower bound.

This is called the "countable chain condition" rather than the more logical term "countable antichain condition" for historical reasons related to complete Boolean algebras. (If κ is a cardinal, then in a complete Boolean algebra every antichain has size less than κ if and only if there is no descending κ-sequence of elements, so chain conditions are equivalent to antichain conditions.)

A topological space is said to satisfy the countable chain condition if the partially ordered set of non-empty open subsets of X satisfies the countable chain condition, i.e. if every pairwise disjoint collection of non-empty open subsets of X is countable.

Every separable topological space is ccc. Every metric space which is ccc is also separable, but in general a ccc topological space need not be separable.

For example,

\{ 0, 1 \}^{ 2^{ 2^{ \aleph_0 }\ } }

with the product topology is ccc but not separable.

Partial orders and spaces satisfying the ccc are used in the statement of Martin's Axiom.

In the theory of forcing, ccc partial orders are used because forcing with any generic set over such an order preserves cardinals and cofinalities.

More generally, if κ is a cardinal then a poset is said to satisfy the κ-chain condition if every antichain has size less than κ. The countable chain condition is the ℵ1-chain condition.

References

  • Jech, Thomas (2003), Set Theory: Millennium Edition, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-44085-7 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Markov chain — A simple two state Markov chain. A Markov chain, named for Andrey Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states. It is a random process characterized …   Wikipedia

  • Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… …   Wikipedia

  • Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Suslin's problem — In mathematics, Suslin s problem is a question about totally ordered sets posed by Mikhail Yakovlevich Suslin in the early 1920s. [cite journal title=Problème 3 last= Souslin first=M. journal=Fundamenta Mathematicae volume=1 date=1920 pages=223]… …   Wikipedia

  • List of forcing notions — In mathematics, forcing is a method of constructing new models M[G] of set theory by adding a generic subset G of a poset P to a model M. The poset P used will determine what statements hold in the new universe (the extension ); to force a… …   Wikipedia

  • List of order theory topics — Order theory is a branch of mathematics that studies various kinds of binary relations that capture the intuitive notion of ordering, providing a framework for saying when one thing is less than or precedes another. An alphabetical list of many… …   Wikipedia

  • Rasiowa-Sikorski lemma — In axiomatic set theory, the Rasiowa Sikorski lemma is one of the most fundamental facts used in the technique of forcing. In the area of forcing, a subset D of a forcing notion ( P , ≤) is called dense in P if for any p ∈ P there is d ∈ D with d …   Wikipedia

  • Proper forcing axiom — In the mathematical field of set theory, the proper forcing axiom ( PFA ) is a significant strengthening of Martin s axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings. Statement A forcing or partially… …   Wikipedia

  • CCC — may refer to: NOTOC Businesses and organizations* Consolidated Contractors Company, a large Middle Eastern and International EPC Contractor * Canterbury of New Zealand, a New Zealand based sports apparel company * Center for community change, one …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”