Rasiowa-Sikorski lemma

Rasiowa-Sikorski lemma

In axiomatic set theory, the Rasiowa-Sikorski lemma is one of the most fundamental facts used in the technique of forcing. In the area of forcing, a subset "D" of a forcing notion ("P", ≤) is called dense in "P" if for any "p" ∈ "P" there is "d" ∈ "D" with "d" ≤ "p". A filter "F" in "P" is called "D"-generic if

:"F" ∩ "E" ≠ ∅ for all "E" ∈ "D".

Now we can state the Rasiowa-Sikorski lemma:

:Let ("P", ≤) be a poset and "p" ∈ "P". If "D" is a countable family of dense subsets of "P" then there exists a "D"-generic filter "F" in "P" such that "p" ∈ "F".

Proof of the Rasiowa-Sikorski lemma

The proof runs as follows: since "D" is countable, one can enumerate the dense subsets of "P" as "D"1, "D"2, …. By assumption, there exists "p" ∈ "P". Then by density, there exists "p"1 ≤ "p" with "p"1 ∈ "D"1. Repeating, one gets … ≤ "p"2 ≤ "p"1 ≤ "p" with "p""i" ∈ "D""i". Then "G" = { "q" ∈ "P": ∃ "i", "q" ≥ "p""i"} is a "D"-generic filter.

The Rasiowa-Sikorski lemma can be viewed as a weaker form of an equivalent to Martin's axiom. More specifically, it is equivalent to MA(aleph_0).

Examples

*For ("P", ≥) = (Func("X", "Y"), ⊂), the poset of partial functions from "X" to "Y", define "D""x" = {"s" ∈ "P": "x" ∈ dom("s")}. If "X" is countable, the Rasiowa-Sikorski lemma yields a {"D""x": "x" ∈ "X"}-generic filter "F" and thus a function ∪ "F": "X" → "Y".
*If we adhere to the notation used in dealing with "D"-generic filters, {"H" ∪ "G"0: "P""ij""P""t"} forms an "H"-generic filter.
*If "D" is uncountable, but of cardinality strictly smaller than 2^{aleph_0} and the poset has the countable chain condition, we can instead use Martin's axiom.

External links

* Tim Chow's newsgroup article [http://www-math.mit.edu/~tchow/mathstuff/forcingdum Forcing for dummies] is a good introduction to the concepts and ideas behind forcing; it covers the main ideas, omitting technical details

See also

* forcing
*generic filter
*Martin's axiom

References

* Ciesielski, K. "Set Theory for the Working Mathematician", London Mathematical Society
*


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Lemma von Rasiowa-Sikorski — Das Rasiowa–Sikorski Lemma, benannt nach den polnischen Mathematikern Roman Sikorski und Helena Rasiowa, ist in der Mengenlehre grundlegend für die Entwicklung der Forcing Methode. Es postuliert die Existenz von Filtern mit gewissen Eigenschaften …   Deutsch Wikipedia

  • Roman Sikorski — (July 11, 1920 in Mszczonów near Grodzisk Mazowiecki September 12, 1983 in Warsaw, Poland) was a Polish mathematician.Sikorski was from 1952 until 1982 professor at the Warsaw University. Since 1962 member of Polish Academy of Sciences and from… …   Wikipedia

  • Martin's axiom — In the mathematical field of set theory, Martin s axiom, introduced by Donald A. Martin and Robert M. Solovay (1970), is a statement which is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, so… …   Wikipedia

  • Forcing — En mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en… …   Wikipédia en Français

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… …   Wikipedia

  • Filter (mathematics) — The powerset algebra of the set {1,2,3,4} with the upset colored green. The green elements make a principal ultrafilter on the lattice. In mathematics, a filter is a special subset of a partially ordered set. A frequently used special case is the …   Wikipedia

  • Forcing — (deutsch auch Erzwingung oder Erzwingungsmethode) ist in der Mengenlehre eine Technik zur Konstruktion von Modellen, die hauptsächlich verwendet wird um relative Konsistenzbeweise zu führen. Sie wurde zuerst 1963 von Paul Cohen verwendet, um die… …   Deutsch Wikipedia

  • Martins Axiom — ist in der Mengenlehre eine Aussage, die in dem üblichen Zermelo Fraenkelschen System weder beweis noch widerlegbar ist. Es wurde 1970 von Donald A. Martin und Robert M. Solovay eingeführt. Motivation Sei eine Quasiordnung und eine Menge von… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”