Tiling by regular polygons

Tiling by regular polygons

Plane tilings by regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in "Harmonices Mundi".

Regular tilings

Following Grünbaum and Shephard (section 1.3), a tiling is said to be "regular" if the symmetry group of the tiling acts transitively on the "flags" of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that for every pair of flags there is a symmetry operation mapping the first flag to the second. This is equivalent to the tiling being an edge-to-edge tiling by congruent regular polygons. There must be six equilateral triangles, four squares or three regular hexagons at a vertex, yielding the three "regular tessellations".

See also


* List of uniform tilings
* Wythoff symbol
* Tessellation
* Wallpaper group
* Regular polyhedron (the Platonic solids)
* Semiregular polyhedron (including the Archimedean solids)
* Hyperbolic geometry
* Penrose tiling

References

*
*
* D. M. Y. Sommerville, "An Introduction to the Geometry of n Dimensions." New York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes

External links

Euclidean and general tiling links:

* cite web
author = Dutch, Steve
title = Uniform Tilings
url = http://www.uwgb.edu/dutchs/symmetry/uniftil.htm
accessdate = 2006-09-09

* cite web
author = Mitchell, K
title = Semi-Regular Tilings
url = http://people.hws.edu/mitchell/tilings/Part1.html
accessdate = 2006-09-09

*
** MathWorld | urlname=DemiregularTessellation | title=Demiregular tessellation

Hyperbolic tiling links:

* cite web
author = Eppstein, David
authorlink = David Eppstein
title = The Geometry Junkyard: Hyperbolic Tiling
url = http://www.ics.uci.edu/~eppstein/junkyard/hypertile.html
accessdate = 2006-09-09

* cite web
author = Hatch, Don
title = Hyperbolic Planar Tessellations
url = http://www.hadron.org/~hatch/HyperbolicTesselations/
accessdate = 2006-09-09

* cite web
author = Joyce, David
title = Hyperbolic Tessellations
url = http://aleph0.clarku.edu/~djoyce/poincare/poincare.html
accessdate = 2006-09-09


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Regular polygon — A regular polygon is a polygon which is equiangular (all angles are congruent) and equilateral (all sides have the same length). Regular polygons may be convex or star.General propertiesThese properties apply to both convex and star regular… …   Wikipedia

  • Truncated square tiling — Type Semiregular tiling Vertex configuration 4.8.8 Schläfli symbol t0,1{4,4} t …   Wikipedia

  • Quasiregular rhombic tiling — Infobox face uniform tiling Type=Dual semiregular tiling Face List=30 60 rhombus Wythoff Symbol=*** Symmetry Group=p6m or *632 Face Type=V3.6.3.6 Dual=Trihexagonal tiling Property List=edge transitive face transitive In geometry, the quasiregular …   Wikipedia

  • Teselado regular — Un teselado regular, teselación regular o teselado con polígonos regulares es una teselación o teselado del plano que emplea un solo tipo de polígonos regulares,[1] que ha sido ampliamente utilizada desde la antigüedad. Solo son posibles… …   Wikipedia Español

  • Deltoidal trihexagonal tiling — Type Dual semiregular tiling Faces kite Face configuration V3.4.6.4 …   Wikipedia

  • Order-3 heptagonal tiling — Poincaré disk model of the hyperbolic plane Type Regular hyperbolic tiling Vertex figure 7.7.7 Schläfli symbol(s) …   Wikipedia

  • Triangular tiling — Type Regular tiling Vertex configuration 3.3.3.3.3.3 (or 36) Schläfli symbol(s) {3,6} {3[3]} …   Wikipedia

  • Order-7 triangular tiling — Poincaré disk model of the hyperbolic plane Type Regular hyperbolic tiling Vertex figure 37 Schläfli symbol(s) …   Wikipedia

  • Order-4 pentagonal tiling — Poincaré disk model of the hyperbolic plane Type Regular hyperbolic tiling Vertex figure 5.5.5.5 Schläfli symbol(s) …   Wikipedia

  • Hexagonal tiling — In geometry, the hexagonal tiling is a regular tiling of the Euclidean plane. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling).Conway calls it a hextille.The internal angle of the hexagon is 120 degrees so three… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”